JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

Hydrocarbons

What Are Hydrocarbons?

Hydrocarbons are organic compounds that are entirely made up of only two kinds of atoms – carbon and hydrogen. Typically, hydrocarbons are colourless gases that have very weak odours. Hydrocarbons can feature simple or relatively complex structures and can be generally classified into four subcategories, namely alkanes, alkenes, alkynes, and aromatic hydrocarbons.Β The study of hydrocarbons can provide insight into the chemical properties of other functional groups and their preparation. Furthermore, hydrocarbons such as propane and butane are used for commercial fuel purposes in the form of Liquefied Petroleum Gas (LPG). Benzene, one of the simplest aromatic hydrocarbons, serves as the raw material for the synthesis of many synthetic drugs.

Download Complete Chapter Notes of Hydrocarbons
Download Now

Hydrocarbons 1

Structure of Hydrocarbon

Download hydrocarbons JEE Previous Year Solved Questions PDF

Table of Contents

The molecular formula for these compounds isΒ CxHy. The existence of hydrocarbons is seen in plants and trees. For example, Carotenes is an organic pigment that is found in green leaves and carrots. These hydrocarbons make up 98% of natural crude rubber. Further, they possess large internal energy, which renders them their importance.

β‡’ Check: Basic Concepts of Organic Chemistry

Classification and Types of Hydrocarbons

Earlier, chemists classified hydrocarbons as either aliphatic or aromatic. The classification was done based on their source and properties. And accordingly, it was found that aliphatic hydrocarbons were derived from the chemical degradation of fats or oils, whereas aromatic hydrocarbons contained substances that were a result of the chemical degradation of certain plant extracts. However, today we classify hydrocarbons on the basis of structure and not merely on their origin.

Hydrocarbons 2

Classification of Hydrocarbons

Types of Hydrocarbons

  • Saturated Hydrocarbons: In these compounds, carbon-carbon atoms and carbon-hydrogen atoms are held together by single bonds. These single-bonded compounds are the simplest hydrocarbons. These types of hydrocarbons don’t have double or triple bonds. In terms of hybridization, they have Sp3 hybridised carbon atoms with no Sp2 or Sp hybridised carbon atoms. They are together called alkanes which have a general formula of CnH2n+2. For example, CH4C3H6.
  • Unsaturated Hydrocarbons: These compounds consist of a single, double or triple bond between carbon-carbon atoms. The double-bonded compounds are called alkenes, and the triple-bonded compounds are called alkynes. The general formula for alkenes is CnH2n, and for alkynes, the general formula isΒ CnH2n-2.
  • Cycloalkanes: These hydrocarbons possess one or multiple carbon rings. The hydrogen atom is attached to the carbon ring.
  • Aromatic Hydrocarbons: They are also called arenes. Arenes are compounds which consist of at least one aromatic ring.
  • AliphaticΒ Hydrocarbons: They are straight chain structures having no rings in them.
  • Alicyclic Hydrocarbons:Β They are hydrocarbons having a ring structure in them. The carbons atoms can be Sp, Sp2, or Sp3 hybridised.

Properties of Hydrocarbons

Due to their different molecular structures, the empirical formula of hydrocarbons is also different from each other. For instance, in alkanes, alkynes or alkenes, the amount of bonded hydrogen decreases in alkenes and alkynes. This is mainly due to the β€œself-bonding” or catenation of carbon that prevents the complete saturation of the hydrocarbon by the formation of double or triple bonds. The ability of hydrocarbons to bond to themselves is known as catenation. With such capabilities, they can form more complex molecules like cyclohexane and, in rare instances, aromatic hydrocarbons like benzene.

The cracking of Hydrocarbons is a process in which heavy organic molecules are broken down into lighter molecules. This is accomplished by supplying an adequate amount of heat and pressure. Sometimes, catalysts are used to speed up the reaction. This process plays a very important role in the commercial production of diesel fuel and gasoline.

β‡’ Check: Combustion of Hydrocarbons

Physical Properties

Alkanes with 10 C-atoms or less are generally gases at room temperatures of more than 10 C-atoms, and the molecules are gases or liquids. Alkanes generally have low boiling and melting points owing to their weak Vanderwal interaction.

The boiling point depends on the following factors:

  • Molecular mass
  • Branching

Alkanes have high molecular mass and high boiling points. For example, C2H6 has more boiling point than CH4.

Alkanes that have the same molecular mass but have a different number of branches, the one with less branching has a more boiling point. This is because Vanderwal’s force becomes weak as the area increases.

For example, CH3-CH2-CH2-CH3 has more boiling point. Alkanes are very feebly soluble in water, but they are soluble in non-polar solvents such as Benzene, CCl4, etc.

Preparation of Hydrocarbons –Β Alkanes

From alkenes and alkynes

The alkanes can be produced from alkenes or alkynes through hydrogenation. H2 gas is passed over a metal surface, such as Ni or Pt, along with the alkenes to produce alkane.

CH2=CH2 β†’ (+Hz/Ni) CH3-CH3

The above reaction is called the β€œSabatier-Sender son’s” reaction. Other catalysts which can be used are Pt, Pd-BaSo4, Adams catalyst (Pt2O) or Wilkinson catalyst (R3PRhCl), etc.

From Alkyl Halides

Alkyl halides can be converted to alkanes through various methods. They are as follows.

1. Using Zn/Protic solvents

2. Using courts reactions

Note:Β Alkanes with only an even number of carbons atoms can be produced.

3. Using Reducing Agents

R-X β†’ [H]R – H

The reducing agents which can be used areΒ LiAlH4, NaBH4, NaNH2, etc.

Note:

  • LiAlH4Β  can’t reduce 3Β° halides.
  • NaBH4Β can’t reduce 1Β° halide.

2. From Aldehydes/Ketones

3. From Carboxylic Acids through Decarboxylation

β‡’ Also Read:Β Pyrolysis of Hydrocarbons

Preparation of Hydrocarbons –Β Alkenes

General formula: CnH2n

Preparation Methods

Most of the reactions involving the preparation of alkenes involve an elimination process. There are 3 mechanisms suggested for the elimination reactions, and all these are Ξ²- eliminations.

E2Β Mechanism

  • Second order kinetics
  • Single step process
  • Order & reactivity 1Β° > 2Β° > 3Β°

Because of steric hindrance,

  • More favoured in non-polar, aprotic solvents.
  • Less substituted alkenes formed as the major product.

E1Β Mechanism

  • Two-step process
  • 1st order kinetics
  • Order of reactivity: 3Β° > 2Β° > 1Β°

Because of the stability of carbonation,

  • More favoured by polar, protic solvents.
  • Rearrangement is possible.
  • Gives more substituted alkenes as major products.

Hydration

(i) Acid catalysed

  • Markovnikov product
  • Rearrangement is possible.

(ii) Hydroboration-oxidation

  • Anti – Markonikov
  • No rearrangement

(iii) Oxymercuration-demercuration

  • Markovnikov
  • No rearrangement

Oxidation Reactions

  • Using Baeyer’s reagent
  • Using hotΒ KMnO4
  • Ozonolysis
  • Using O5O4
  • Addition of peroxy acid

Preparation of Hydrocarbons –Β Alkynes

Alkynes can be prepared fromΒ alkyl halides andΒ alcohols.

Addition reaction:

All addition reactionsΒ in alkenes are possible.

Benzene –Β Preparation

  • From ethyne
  • From phenol
  • From aniline

Chemical Properties:

Benzene generally undergoes electrophilic substitution reactions.

Uses of Hydrocarbons

  • Hydrocarbons are widely used as fuels. For example, LPG (Liquefied Petroleum Gas), and CNG (Liquefied Natural Gas).
  • They are used in the manufacturing of polymers such as polyethene, polystyrene etc.
  • These organic compounds find their application in the manufacturing of drugs and dyes as a starting material.
  • They serve as lubricating oil and grease.

Hydrocarbons – Important Topics

Hydrocarbons - Important Topics

Hydrocarbons – Important Questions

Hydrocarbons - Important Questions

Hydrocarbons – Top 12 Most Important and Expected Questions

Hydrocarbons – JEE Advanced Questions

Hydrocarbons Revision for JEE Main

Hydrocarbons Chemistry One-Shot for JEE

Frequently Asked Questions on Hydrocarbons

Q1

What are the 4 types of hydrocarbons?

Alkanes, Alkenes, Alkynes and Aromatic hydrocarbons are the 4 types of hydrocarbons.
Q2

What are hydrocarbons made up of?

Hydrocarbons are made up of the elements carbon and hydrogen. These compounds are dominant in crude oil, coal tar and waste products of pyrolysis.
Q3

What are the characteristics of hydrocarbons?

The characteristics of hydrocarbons are listed below:
Hydrocarbons are colourless and odourless.
They undergo a combustion reaction with oxygen giving carbon dioxide and water.
Greater the number of carbons, the greater the melting point of hydrocarbons.
Q4

Why are alkanes the least reactive hydrocarbons?

Alkanes are the least reactive hydrocarbons because of their stability. They contain only strong single sigma bonds. A high amount of energy is required to break sigma bonds, and thus they are the least reactive.
Q5

What is the product of ozonolysis of ethene?

Ethene on ozonolysis forms ozonide, which on further reduction with zinc dust, forms 2 molecules of formaldehyde.
Test your Knowledge on Hydrocarbons

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

  1. That article is very good and simple for understanding the concept of hydro-carbons. it also described the types of hydrocarbons.