RD Sharma Solutions for Class 8 Chapter 8 Division of Algebraic Expressions Exercise 8.1

RD Sharma Class 8 Solutions Chapter 8 Ex 8.1 PDF Free Download

The first exercise of this Chapter provides basic definitions to the terms used in this chapter, we also find the degree of a polynomial in one variable and two variables. BYJU’S expert team has designed the solutions for RD Sharma Class 8 Maths Chapter 8 to help students prepare for their exams at ease. RD Sharma Class 8 Solutions is one of the best reference materials for CBSE students. Learners can download the pdf from the links provided below.

Download the pdf of RD Sharma for Class 8 Maths Exercise 8.1 Chapter 8 Division of Algebraic Expressions

 

rd sharma class 8 maths chapter 8
rd sharma class 8 maths chapter 8
rd sharma class 8 maths chapter 8

 

Access Answers to RD Sharma Solutions for Class 8 Maths Exercise 8.1 Chapter 8 Division of Algebraic Expressions

1. Write the degree of each of the following polynomials:

(i) 2x3 + 5x2 – 7

(ii) 5x2 – 3x + 2

(iii) 2x + x2 – 8

(iv) 1/2y7 – 12y6 + 48y5 – 10

(v) 3x3 + 1

(vi) 5

(vii) 20x3 + 12x2y2 – 10y2 + 20

Solution:

(i) 2x3 + 5x2 – 7

We know that in a polynomial, degree is the highest power of the variable.

The degree of the polynomial, 2x3 + 5x2 – 7 is 3.

(ii) 5x2 – 3x + 2

The degree of the polynomial, 5x2 – 3x + 2 is 2.

(iii) 2x + x2 – 8

The degree of the polynomial, 2x + x2 – 8 is 2.

(iv) 1/2y7 – 12y6 + 48y5 – 10

The degree of the polynomial, 1/2y7 – 12y6 + 48y5 – 10 is 7.

(v) 3x3 + 1

The degree of the polynomial, 3x3 + 1 is 3

(vi) 5

The degree of the polynomial, 5 is 0 (since 5 is a constant number).

(vii) 20x3 + 12x2y2 – 10y2 + 20

The degree of the polynomial, 20x3 + 12x2y2 – 10y2 + 20 is 4.

2. Which of the following expressions are not polynomials?

(i) x2 + 2x-2

(ii) √(ax) + x2 – x3

(iii) 3y3 – √5y + 9

(iv) ax1/2 + ax + 9x2 + 4

(v) 3x-3 + 2x-1 + 4x + 5

Solution:

(i) x2 + 2x-2

The given expression is not a polynomial.

Because a polynomial does not contain any negative powers or fractions.

(ii) √(ax) + x2 – x3

The given expression is a polynomial.

Because the polynomial has positive powers.

(iii) 3y3 – √5y + 9

The given expression is a polynomial.

Because the polynomial has positive powers.

(iv) ax1/2 + ax + 9x2 + 4

The given expression is not a polynomial.

Because a polynomial does not contain any negative powers or fractions.

(v) 3x-3 + 2x-1 + 4x + 5

The given expression is not a polynomial.

Because a polynomial does not contain any negative powers or fractions.

3. Write each of the following polynomials in the standard from. Also, write their degree:

(i) x2 + 3 + 6x + 5x4

(ii) a2 + 4 + 5a6

(iii) (x3 – 1) (x3 – 4)

(iv) (y3 – 2) (y3 + 11)

(v) (a3 – 3/8) (a3 + 16/17)

(vi) (a + 3/4) (a + 4/3)

Solution:

(i) x2 + 3 + 6x + 5x4

The standard form of the polynomial is written in either increasing or decreasing order of their powers.

3 + 6x + x2 + 5x4 or 5x4 + x2 + 6x + 3

The degree of the given polynomial is 4.

(ii) a2 + 4 + 5a6

The standard form of the polynomial is written in either increasing or decreasing order of their powers.

4 + a2 + 5a6 or 5a6 + a2 + 4

The degree of the given polynomial is 6.

(iii) (x3 – 1) (x3 – 4)

x6 – 4x3 – x3 + 4

x6 – 5x3 + 4

The standard form of the polynomial is written in either increasing or decreasing order of their powers.

x6 – 5x3 + 4 or 4 – 5x3 + x6

The degree of the given polynomial is 6.

(iv) (y3 – 2) (y3 + 11)

y6 + 11y3 – 2y3 – 22

y6 + 9y3 – 22

The standard form of the polynomial is written in either increasing or decreasing order of their powers.

y6 + 9y3 – 22 or -22 + 9y3 + y6

The degree of the given polynomial is 6.

(v) (a3 – 3/8) (a3 + 16/17)

a6 + 16a3/17 – 3a3/8 – 6/17

a6 + 27/136a3 – 48/136

The standard form of the polynomial is written in either increasing or decreasing order of their powers.

a6 + 27/136a3 – 48/136 or -48/136 + 27/136a3 + a6

The degree of the given polynomial is 6.

(vi) (a + 3/4) (a + 4/3)

a2 + 4a/3 + 3a/4 + 1

a2 + 25a/12 + 1

The standard form of the polynomial is written in either increasing or decreasing order of their powers.

a2 + 25a/12 + 1 or 1 + 25a/12 + a2

The degree of the given polynomial is 2.


Access other Exercises of RD Sharma Solutions for Class 8 Maths Chapter 8 Division of Algebraic Expressions

Exercise 8.2 Solutions

Exercise 8.3 Solutions

Exercise 8.4 Solutions

Exercise 8.5 Solutions

Exercise 8.6 Solutions

Leave a Comment

Your email address will not be published. Required fields are marked *