RD Sharma Solutions Class 9 Triangle And Its Angles Exercise 9.2

RD Sharma Solutions Class 9 Chapter 9 Exercise 9.2

RD Sharma Class 9 Solutions Chapter 9 Ex 9.2 Free Download

Q1) The exterior angles, obtained on producing the base of a triangle both ways are 1040 and 1360. Find all the angles of the triangle.

Solution:

5

\(\angle ACD=\angle ABC+\angle BAC\;\;\;\;\;\;\;\;\;[Exterior\;angle\;property]\\ Now\;\angle ABC=180^{0}-136^{0}=44^{0}\;\;\;\;\;\;[Linera\;pair]\\ \angle ACB=180^{0}-104^{0}=76^{0}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;[Linera\;pair]\\\\ Now,\\ In\;\Delta ABC\\ \angle A+\angle ABC+\angle ACB=180^{0}\;\;\;\;\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\\ \Rightarrow \angle A+44^{0}+76^{0}=180^{0}\\ \Rightarrow \angle A=180^{0}-44^{0}-76^{0}\\ \Rightarrow \angle A=60^{0}\)

 

 

Q2) In a triangle ABC, the internal bisectors of \(\angle B\;and\;\angle C\) meet at P and the external bisectors of \(\angle B\;and\;\angle C\) meet at Q. Prove that \(\angle BPC+\angle BQC=180^{0}\).

Solution:

6

\(Let\;\angle ABD=2x\;and\;\angle ACE=2y\\ \angle ABC=180^{0}-2x\;\;\;\;\;\;[Linera\;pair]\\ \angle ACB=180^{0}-2y\;\;\;\;\;\;[Linera\;pair]\\ \angle A+\angle ABC+\angle ACB=180^{0}\;\;\;\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\\ \Rightarrow \angle A+180^{0}-2x+180^{0}-2y=180^{0}\\ \Rightarrow -\angle A+2x+2y=180^{0}\\ \Rightarrow x+y=90^{0}+\frac{1}{2}\angle A\)

\(Now\;in\;\Delta BQC\\ x+y+\angle BQC=180^{0}\;\;\;\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\\ \Rightarrow 90^{0}+\frac{1}{2}\angle A+\angle BQC=180^{0}\\ \Rightarrow \angle BQC=90^{0}-\frac{1}{2}\angle A….(i)\\ and\;we\;know\;that\;\angle BPC=90^{0}+\frac{1}{2}\angle A….(ii)\\ Adding\;(i)\;and\;(ii)\;we\;get\\ \angle BPC+\angle BQC=180^{0}\)

Hence proved.

 

Q3) In figure 9.30, the sides BC, CA and AB of a triangle ABC have been produced to D, E and F respectively. If \(\angle ACD=105^{0}\;and\;\angle EAF=45^{0}\), find all the angles of the triangle ABC.

Solution:

9

\(\angle BAC=\angle EAF=45^{0}\;\;\;\;\;[Vertically\;opposite\;angles]\\ \angle ABC=105^{0}-45^{0}=60^{0}\;\;\;\;\;[Exterior\;angle\;property]\\ \angle ACD=180^{0}-105^{0}=75^{0}\;\;\;[Linear\;pair]\)

 

Q4) Compute the value of x in each of the following figures:

(i)

8

Solution:

\(\angle BAC=180^{0}-120^{0}=60^{0}\;\;\;\;\;[Linear\;pair]\\ \angle ACB=180^{0}-112^{0}=68^{0}\;\;\;\;\;\;\;\;\;\;[Linear\;pair]\\ ∴ x=180^{0}-\angle BAC-\angle ACB=180^{0}-60^{0}-68^{0}=52^{0}\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\)

 

(ii)

9

Solution:

\(\angle ABC=180^{0}-120^{0}=60^{0}\;\;\;\;\;[Linear\;pair]\\ \angle ACB=180^{0}-110^{0}=70^{0}\;\;\;\;\;\;\;\;\;\;[Linear\;pair]\\ ∴ e \angle BAC=x=180^{0}-\angle ABC-\angle ACB\\ =180^{0}-60^{0}-70^{0}=50^{0}\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\)

 

(iii)

10

Solution:

\(\angle BAE=\angle EDC=52^{0}\;\;\;\;\;[Alternate\;angles]\\ ∴ \angle DEC=x=180^{0}-40^{0}-\angle EDC\\ =180^{0}-40^{0}-52^{0}\\ =180^{0}-92^{0}\\ =88^{0}\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\)

 

 

(iv) 

11

Solution:

CD is produced to meet AB at E.

\(\angle BEC=180^{0}-45^{0}-50^{0}\\ =85^{0}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;[Sum\;of\;all\;angles\;of\;a\;triangle]\\ \angle AEC=180^{0}-85^{0}=95^{0}\;\;\;\;[Linear\;pair]\\ ∴ x=95^{0}+35^{0}=130^{0}\;\;\;\;[Exterior\;angle\;property]\).

12

 

Q5) In figure 9.35, AB divides \(\angle DAC\) in the ratio 1 : 3 and AB = DB. Determine the value of x.

13

Solution:

\(Let\;\angle BAD=Z,\angle BAC=3Z\\ \Rightarrow \angle BDA=\angle BAD=Z\;\;\;\;(∵ AB=DB)\\\\ Now\;\angle BAD+\angle BAC+108^{0}=180^{0}\;\;\;\;\;[Linear\;pair]\\ \Rightarrow Z+3Z+108^{0}=180^{0}\\ \Rightarrow 4Z=72^{0}\\ \Rightarrow Z=18^{0}\\\\ Now,\;In\;\Delta ADC\\ \angle ADC+\angle ACD=108^{0}\;\;\;\;[Exterior\;angle\;property]\\ \Rightarrow x+18^{0}=180^{0}\\ \Rightarrow x=90^{0}\)

 

Q6) ABC is a triangle. The bisector of the exterior angle at B and the bisector of \(\angle C\) intersect each other at D. Prove that \(\angle D=\frac{1}{2}\angle A\).

Solution:

14

\(Let\;\angle ABE=2x\;and\;\angle ACB=2y\\ \angle ABC=180^{0}-2x\;\;\;\;\;[Linear\;pair]\\∴\angle A=180^{0}-\angle ABC-\angle ACB\;\;\;\;\;[Angle\;sum\;property]\\ =180^{0}-180^{0}+2x+2y\\ =2(x-y)\;\;\;\;\;\;\;…..(i)\\\\ Now,\;\angle D=180^{0}-\angle DBC-\angle DCB\\ \Rightarrow \angle D=180^{0}-(x+180^{0}-2x)-y\\ \Rightarrow \angle D=180^{0}-x-180^{0}+2x-y\\ =(x-y)\\ =\frac{1}{2}\angle A\;\;\;\;\;\;…..from(i)\\ Hence,\;\angle D=\frac{1}{2}\angle A\).

 

Q7) In figure 9.36, \(AC\perp CE\;and\;\angle A:\angle B:\angle C=3:2:1,\;find\;\)

15

Solution:

\(\angle A:\angle B:\angle C=3:2:1\\\\ Let\;the\;angles\;be\;3x,\;2x\;and\;x\\ \Rightarrow 3x+2x+x=180^{0}\;\;\;\;\;\;[Angle\;sum\;property]\\ \Rightarrow 6x=180^{0}\\ \Rightarrow x=30^{0}=\angle ACB\\\\ ∴ \angle ECD=180^{0}-\angle ACB-90^{0}\;\;\;\;\;[Linear\;pair]\\ =180^{0}-30^{0}-90^{0}\\ =60^{0}\\ ∴ \angle ECD=60^{0}\)

 

 

Q8) In figure 9.37, \(AM\perp BC\;and\;AN\;is\;the\;bisector\;of\angle A.\;If\;\angle B=65^{0}\;and\;\angle C=33^{0},\;find\;\angle MAN.\).

16

Solution:

\(Let\;\angle BAN=\angle NAC=x\;\;\;\;\;[∵ AN\;bisects\;\angle A]\\\\ ∴ \angle ANM=x+33^{0}\;\;\;\;\;[Exterior\;angle\;property]\\\\ In\;\Delta AMB\\ \angle BAM=90^{0}-65^{0}=25^{0}\;\;\;\;\;[Exterior\;angle\;property]\\\\ ∴ \angle MAN=\angle BAN-\angle BAM=(x-25)^{0}\\\\ Now\;in\;\Delta MAN,\\ (x-25)^{0}+(x+33)^{0}+90^{0}=180^{0}\;\;\;\;\;\;[Angle\;sum\;property]\\ \Rightarrow 2x+8^{0}=90^{0}\\ \Rightarrow 2x=82^{0}\\ \Rightarrow x=41^{0}\\\\ ∴ MAN=x-25^{0}\\ =41^{0}-25^{0}\\ =16^{0}\)

 

Q9) In a triangle ABC, AD bisects \(\angle A\;and\;\angle C>\angle B.\;Prove\;that\;\angle ADB>\angle ADC.\).

Solution:

17

\(∵ \angle C>\angle B\)                               [Given]

\(\Rightarrow \angle C+x>\angle B+x\)                 [Adding x on both sides]

⇒  180° – ∠ ADC>180^{0} – ∠ ADB

⇒  -∠ ADC> – ∠ ADB

⇒  ∠ ADB > ∠ ADC

Hence proved.

 

Q10) In triangle ABC, \(BD\perp AC\;and\;CE\perp AB.\;If\;BD\;and\;CE\;intersect\;at\;O,\;prove\;that\;\angle BOC=180^{0}-\angle A.\).

Solution:

18

In quadrilateral AEOD

\(\angle A+\angle AEO+\angle EOD+\angle ADO=360^{0}\\ \Rightarrow \angle A+90^{0}+90^{0}+\angle EOD=360^{0}\\ \Rightarrow \angle A+\angle BOC=180^{0}\;\;\;\;\;\;\;[∵ \angle EOD=\angle BOC\;vertically\;opposite\;angles]\\ \Rightarrow \angle BOC=180^{0}-\angle A\)

 

Q11) In figure 9.38, AE bisects \(\angle CAD\;and\;\angle B=\angle C.\;Prove\;that\;AE\parallel BC.\)

19

Solution:

\(Let\;\angle B=\angle C=x\\ Then,\\ \angle CAD=\angle B+\angle C=2x\;\;\;\;\;(exterior\;angle)\\ \Rightarrow \frac{1}{2}\angle CAD=x\\ \Rightarrow \angle EAC=x\\ \Rightarrow \angle EAC=\angle C\\\)

These are alternate interior angles for the lines AE and BC

\(∴ AE\parallel BC\)

 

Q12) In figure 9.39, \(AB\parallel DE.\;Find\;\angle ACD.\)

20

Solution:

Since \(AB\parallel DE\)

\(∴ \angle ABC=\angle CDE=40^{0}\;\;\;\;\;\;[Alternate\;angles]\\\\ ∴ \angle ACB=180^{0}-\angle ABC-\angle BAC\\ =180^{0}-40^{0}-30^{0}\\ =110^{0}\\\\ ∴ \angle ACD=180^{0}-110^{0}\;\;\;\;\;[Linear\;pair]\\ =70^{0}\)

 

  

Q13) . Which of the following statements are true (T) and which are false (F) :

(i) Sum of the three angles of a triangle is 180°.

(ii) A triangle can have two right angles.

(iii) All the angles of a triangle can be less than 60°.

(iv) All the angles of a triangle can be greater than 60°.

(v) All the angles of a triangle can be equal to 60°.

(vi) A triangle can have two obtuse angles.

(vii) A triangle can have at most one obtuse angles.

(viii) If one angle of a triangle is obtuse, then it cannot be a right angled triangle.

(ix) An exterior angle of a triangle is less than either of its interior opposite angles.

(x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.

(xi) An exterior angle of a triangle is greater than the opposite interior angles.

Solution:

(i) T

(ii) F

(iii) F

(iv) F

(v) T

(vi) F

(vii) T

(viii) T

(ix) F

(x) T

(xi) T

 

Q14) Fill in the blanks to make the following statements true:

(i) Sum of the angles of a triangle is _______ . 

(ii) An exterior angle of a triangle is equal to the two ________ opposite angles.

(iii) An exterior angle of a triangle is always ________ than either of the interior opposite angles.

(iv) A triangle cannot have more than _______ right angles.

(v) A triangles cannot have more than _______ obtuse angles.

Solution:

(i) 1800

(ii) Interior

(iii) Greater

(iv) One

(v) One

 

 


Practise This Question

The content of the carbon dioxide in the air is 500 ppm(parts per million). What is the content of Oxygen in the air ?