RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.1

The science of measuring triangles is trigonometry. In other words, it deals with the measurement of the sides and angles of triangles. This exercise contains problems dealing with finding all the trigonometric ratios when one of them is given. Further, the value of an expression is also asked to be evaluated. All the solutions to this and other chapters are easily available on the RD Sharma Solutions Class 10. For specific doubts regarding the solution and concept, students can download RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.1 PDF below.

RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.1

Download PDF Download PDF

Access RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.1

1. In each of the following, one of the six trigonometric ratios s given. Find the values of the other trigonometric ratios.

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 1

(i) sin A = 2/3

Solution:

We have,

sin A = 2/3 ……..….. (1)

As we know, by sin definition,

sin A =  Perpendicular/ Hypotenuse = 2/3 ….(2)

By comparing eq. (1) and (2), we have

Opposite side = 2 and Hypotenuse = 3

Now, on using Pythagoras’ theorem in Δ ABC,

AC= AB2 + BC2

Putting the values of the perpendicular side (BC) and hypotenuse (AC) and for the base side as (AB), we get

⇒ 32 = AB2 + 22

AB= 32 – 22

AB2 = 9 – 4

AB2 = 5

AB = √5

Hence, Base = √5

By definition,

cos A = Base/Hypotenuse

⇒ cos A = √5/3

Since, cosec A = 1/sin A = Hypotenuse/Perpendicular

⇒ cosec A = 3/2

And, sec A = Hypotenuse/Base

⇒ sec A = 3/√5

And, tan A = Perpendicular/Base

⇒ tan A =  2/√5

And, cot A = 1/ tan A = Base/Perpendicular

⇒ cot A = √5/2

(ii) cos A = 4/5

Solution:

We have,

cos A = 4/5 …….…. (1)

As we know, by cos definition,

cos A = Base/Hypotenuse …. (2)

By comparing eq. (1) and (2), we get

Base = 4 and Hypotenuse = 5

Now, using Pythagoras’ theorem in Δ ABC,

AC= AB+ BC2

Putting the value of base (AB) and hypotenuse (AC) and for the perpendicular (BC), we get

52 = 42 + BC2

BC2 = 52 – 42

BC2 = 25 – 16

BC2 = 9

BC= 3

Hence, Perpendicular = 3

By definition,

sin A = Perpendicular/Hypotenuse

⇒ sin A = 3/5

Then, cosec A = 1/sin A

⇒ cosec A= 1/ (3/5) = 5/3 = Hypotenuse/Perpendicular

And, sec A = 1/cos A

⇒ sec A =Hypotenuse/Base

sec A = 5/4

And, tan A = Perpendicular/Base

⇒ tan A = 3/4

Next, cot A = 1/tan A = Base/Perpendicular

∴ cot A = 4/3

(iii) tan θ = 11/1

Solution:

We have, tan θ = 11…..…. (1)

By definition,

tan θ = Perpendicular/ Base…. (2)

On Comparing eq. (1) and (2), we get;

Base = 1 and Perpendicular = 5

Now, using Pythagoras’ theorem in Δ ABC,

AC2 = AB2 + BC2

Putting the value of base (AB) and perpendicular (BC) to get hypotenuse(AC), we get

AC2 = 12 + 112

AC2 = 1 + 121

AC2= 122

AC= √122

Hence, hypotenuse = √122

By definition,

sin = Perpendicular/Hypotenuse

⇒ sin θ = 11/√122

And, cosec θ = 1/sin θ

⇒ cosec θ = √122/11

Next, cos θ = Base/ Hypotenuse

⇒ cos θ = 1/√122

And, sec θ = 1/cos θ

⇒ sec θ = √122/1 = √122

And, cot θ  = 1/tan θ

∴ cot θ = 1/11

(iv) sin θ = 11/15

Solution:

We have,  sin θ = 11/15 ………. (1)

By definition,

sin θ = Perpendicular/ Hypotenuse …. (2)

On Comparing eq. (1) and (2), we get,

Perpendicular = 11 and Hypotenuse= 15

Now, using Pythagoras’ theorem in Δ ABC,

AC2 = AB2 + BC2

Putting the value of perpendicular (BC) and hypotenuse (AC) to get the base (AB), we have

152 = AB2 +112

AB2 = 15– 112

AB2 = 225 – 121

AB= 104

AB = √104

AB= √ (2×2×2×13)

AB= 2√(2×13)

AB= 2√26

Hence, Base = 2√26

By definition,

cos θ = Base/Hypotenuse

∴ cosθ = 2√26/ 15

And, cosec θ = 1/sin θ

∴ cosec θ = 15/11

And, secθ = Hypotenuse/Base

∴ secθ =15/ 2√26

And,  tan θ = Perpendicular/Base

∴ tanθ =11/ 2√26

And,  cot θ = Base/Perpendicular

∴ cotθ =2√26/ 11

 (v) tan α = 5/12

Solution:

We have,  tan α = 5/12 …. (1)

By definition,

tan α = Perpendicular/Base…. (2)

On Comparing eq. (1) and (2), we get

Base = 12 and Perpendicular side = 5

Now, using Pythagoras’ theorem in Δ ABC

AC2 = AB2 + BC2

Putting the value of the base (AB) and the perpendicular (BC) to get hypotenuse (AC), we have

AC2 = 122 + 52

AC2 = 144 + 25

AC2= 169

AC = 13 [After taking sq root on both sides]

Hence, Hypotenuse = 13

By definition,

sin α  = Perpendicular/Hypotenuse

∴ sin α = 5/13

And, cosec α  = Hypotenuse/Perpendicular

∴ cosec α = 13/5

And,  cos α = Base/Hypotenuse

∴ cos α = 12/13

And,  sec α =1/cos α

∴ sec α = 13/12

And, tan α = sin α/cos α

∴ tan α=5/12

Since, cot α = 1/tan α

∴ cot α =12/5

 

 (vi) sin θ = √3/2

Solution:

We have, sin θ = √3/2 …………. (1)

By definition,

sin θ = Perpendicular/ Hypotenuse….(2)

On Comparing eq. (1) and (2), we get;

Perpendicular = √3 and Hypotenuse = 2

Now, using Pythagoras’ theorem in Δ ABC,

AC2 = AB2 + BC2

Putting the value of perpendicular (BC) and hypotenuse (AC) and getting the base (AB), we get

22 = AB2 + (√3)2

AB2 = 22 – (√3)2

AB2 = 4 – 3

AB2 = 1

AB = 1

Thus, Base = 1

By definition,

cos θ = Base/Hypotenuse

∴ cos θ = 1/2

And, cosec θ = 1/sin θ

Or cosec θ= Hypotenuse/Perpendicular

∴ cosec θ =2/√3

And,  sec θ = Hypotenuse/Base

∴ sec θ = 2/1

And,  tan θ = Perpendicular/Base

∴ tan θ = √3/1

And,  cot θ = Base/Perpendicular

∴ cot θ = 1/√3

(vii) cos θ = 7/25

Solution:

We have, cos θ = 7/25 ……….. (1)

By definition,

cos θ = Base/Hypotenuse

On Comparing eq. (1) and (2), we get

Base = 7 and Hypotenuse = 25

Now, using Pythagoras’ theorem in Δ ABC,

AC2= AB2 + BC2

Putting the value of base (AB) and hypotenuse (AC) to get the perpendicular (BC),

252 = 7+BC2

BC2 = 252 – 72

BC2 = 625 – 49

BC2 = 576

BC= √576

BC= 24

Hence, the Perpendicular side = 24

By definition,

sin θ = perpendicular/Hypotenuse

∴ sin θ = 24/25

Since, cosec θ = 1/sin θ

Also, cosec θ= Hypotenuse/Perpendicular

∴ cosec θ = 25/24

Since,  sec θ = 1/cosec θ

Also,  sec θ = Hypotenuse/Base

∴ sec θ = 25/7

Since,  tan θ = Perpendicular/Base

∴ tan θ = 24/7

Now,  cot = 1/tan θ

So,  cot θ = Base/Perpendicular

∴ cot θ = 7/24

(viii) tan θ = 8/15

Solution:

We have, tan θ = 8/15 …………. (1)

By definition,

tan θ = Perpendicular/Base …. (2)

On Comparing eq. (1) and (2), we get;

Base = 15 and Perpendicular = 8

Now, using Pythagoras’ theorem in Δ ABC,

AC2 = 152 + 82

AC2 = 225 + 64

AC2 = 289

AC = √289

AC = 17

Hence, Hypotenuse = 17

By definition,

Since,  sin θ = perpendicular/Hypotenuse

∴ sin θ = 8/17

Since, cosec θ = 1/sin θ

Also, cosec θ = Hypotenuse/Perpendicular

∴ cosec θ = 17/8

Since,  cos θ = Base/Hypotenuse

∴ cos θ = 15/17

Since,  sec θ = 1/cos θ

Also,  sec θ = Hypotenuse/Base

∴ sec θ = 17/15

Since, cot θ = 1/tan θ

Also,  cot θ = Base/Perpendicular

∴ cot θ = 15/8

(ix) cot θ = 12/5

Solution:

We have, cot θ = 12/5 …………. (1)

By definition,

cot θ = 1/tan θ

cot θ = Base/Perpendicular ……. (2)

On Comparing eq. (1) and (2), we have

Base = 12 and Perpendicular side = 5

Now, using Pythagoras’ theorem in Δ ABC,

AC2= AB2 + BC2

Putting the value of base (AB) and perpendicular (BC) to get the hypotenuse (AC),

AC2 = 122 + 52

AC2= 144 + 25

AC2 = 169

AC = √169

AC = 13

Hence, Hypotenuse = 13

By definition,

Since,  sin θ = perpendicular/Hypotenuse

∴ sin θ= 5/13

Since, cosec θ = 1/sin θ

Also, cosec θ= Hypotenuse/Perpendicular

∴ cosec θ = 13/5

Since,  cos θ = Base/Hypotenuse

∴ cos θ = 12/13

Since,  sec θ = 1/cosθ

Also,  sec θ = Hypotenuse/Base

∴ sec θ = 13/12

Since,  tanθ = 1/cot θ

Also,  tan θ = Perpendicular/Base

∴ tan θ = 5/12

(x)  sec θ = 13/5

Solution:

We have, sec θ = 13/5…….… (1)

By definition,

sec θ = Hypotenuse/Base…………. (2)

On Comparing eq. (1) and (2), we get

Base = 5 and Hypotenuse = 13

Now, using Pythagoras’ theorem in Δ ABC,

AC= AB2 + BC2

And putting the value of the base side (AB) and hypotenuse (AC) to get the perpendicular side (BC),

132 = 52 + BC2

BC2 = 13– 52

BC2=169 – 25

BC2= 144

BC= √144

BC = 12

Hence, Perpendicular = 12

By definition,

Since,  sin θ = perpendicular/Hypotenuse

∴ sin θ= 12/13

Since, cosec θ= 1/ sin θ

Also, cosec θ= Hypotenuse/Perpendicular

∴ cosec θ = 13/12

Since cos θ= 1/sec θ

Also,  cos θ = Base/Hypotenuse

∴ cos θ = 5/13

Since,  tan θ = Perpendicular/Base

∴ tan θ = 12/5

Since,  cot θ = 1/tan θ

Also,  cot θ = Base/Perpendicular

∴ cot θ = 5/12

(xi)  cosec θ = √10

Solution:

We have, cosec θ = √10/1   ……..… (1)

By definition,

cosec θ = Hypotenuse/ Perpendicular …….….(2)

And, cosecθ = 1/sin θ

On comparing eq.(1) and(2), we get

Perpendicular side = 1 and Hypotenuse = √10

Now, using Pythagoras’ theorem in Δ ABC,

AC= AB2 + BC2

Putting the value of perpendicular (BC) and hypotenuse (AC) to get the base side (AB),

(√10)2 = AB2 + 12

AB2= (√10)2 – 12

AB2= 10 – 1

AB = √9

AB = 3

So, Base side = 3

By definition,

Since,  sin θ = Perpendicular/Hypotenuse

∴ sin θ = 1/√10

Since,  cos θ = Base/Hypotenuse

∴ cos θ = 3/√10

Since,  sec θ = 1/cos θ

Also, sec θ = Hypotenuse/Base

∴ sec θ = √10/3

Since,  tan θ = Perpendicular/Base

∴ tan θ = 1/3

Since,  cot θ = 1/tan θ

∴ cot θ = 3/1

(xii)  cos θ =12/15

Solution:

We have; cos θ = 12/15 ………. (1)

By definition,

cos θ = Base/Hypotenuse……… (2)

By comparing eq. (1) and (2), we get

Base =12 and Hypotenuse = 15

Now, using Pythagoras’ theorem in Δ ABC, we get

AC2 = AB2+ BC2

Putting the value of base (AB) and hypotenuse (AC) to get the perpendicular (BC),

152 = 122 + BC2

BC2 = 152 – 122

BC2 = 225 – 144

BC 2= 81

BC = √81

BC = 9

So, Perpendicular = 9

By definition,

Since,  sin θ = perpendicular/Hypotenuse

∴ sin θ = 9/15 = 3/5

Since, cosec θ = 1/sin θ

Also, cosec θ = Hypotenuse/Perpendicular

∴ cosec θ= 15/9 = 5/3

Since,  sec θ = 1/cos θ

Also,  sec θ = Hypotenuse/Base

∴ sec θ = 15/12 = 5/4

Since,  tan θ = Perpendicular/Base

∴ tan θ = 9/12 = 3/4

Since,  cot θ = 1/tan θ

Also,  cot θ = Base/Perpendicular

∴ cot θ = 12/9 = 4/3

2. In a △ ABC, right angled at B, AB = 24 cm , BC = 7 cm. Determine

(i) sin A , cos A (ii) sin C, cos C

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 2

(i) Given: In △ABC, AB = 24 cm, BC = 7cm and ∠ABC = 90o

To find: sin A, cos A

By using Pythagoras’ theorem in △ABC, we have

AC2 = AB2 + BC2

AC2 = 242 + 72

AC2 = 576 + 49

AC2= 625

AC = √625

AC= 25

Hence, Hypotenuse = 25

By definition,

sin A = Perpendicular side opposite to angle A/ Hypotenuse

sin A = BC/ AC

sin A = 7/ 25

And,

cos A = Base side adjacent to angle A/Hypotenuse

cos A = AB/ AC

cos A = 24/ 25

 

(ii) Given: In △ABC , AB = 24 cm and BC = 7cm and ∠ABC = 90o

To find: sin C, cos C

By using Pythagoras’ theorem in △ABC, we have

AC2 = AB2 + BC2

AC2 = 242 + 72

AC2 = 576 + 49

AC2= 625

AC = √625

AC= 25

Hence, Hypotenuse = 25

By definition,

sin C = Perpendicular side opposite to angle C/Hypotenuse

sin C = AB/ AC

sin C = 24/ 25

And,

cos C = Base side adjacent to angle C/Hypotenuse

cos A = BC/AC

cos A = 7/25

3. In fig. 5.37, find tan P and cot R. Is tan P = cot R? 

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 3

By using Pythagoras’ theorem in △PQR, we have

PR2 = PQ2 + QR2

Putting the length of the given side PR and PQ in the above equation,

132 = 122 + QR2

QR2 = 132 – 122

QR2 = 169 – 144

QR2 = 25

QR = √25 = 5

By definition,

tan P = Perpendicular side opposite to P/ Base side adjacent to angle P

tan P = QR/PQ

tan P = 5/12 ………. (1)

And,

cot R= Base/Perpendicular

cot R= QR/PQ

cot R= 5/12 …. (2)

When comparing equations (1) and (2), we can see that the R.H.S. of both equations is equal.

Therefore, the L.H.S of both equations should also be equal.

∴ tan P = cot R

Yes, tan P = cot R = 5/12

4. If sin A = 9/41, compute cos A and tan A.

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 4

Given that, sin A = 9/41 …………. (1)

Required to find: cos A, tan A

By definition, we know that

sin A = Perpendicular/ Hypotenuse……………(2)

On Comparing eq. (1) and (2), we get;

Perpendicular side = 9 and Hypotenuse = 41

Let’s construct △ABC as shown below,

And, here, the length of base AB is unknown.

Thus, by using Pythagoras’ theorem in △ABC, we get

AC2 = AB2 + BC2

412 = AB2 + 92

AB2 = 412 – 92

AB2 = 168 – 81

AB= 1600

AB = √1600

AB = 40

⇒ Base of triangle ABC, AB = 40

We know that,

cos A = Base/ Hypotenuse

cos A =AB/AC

cos A =40/41

And,

tan A = Perpendicular/ Base

tan A = BC/AB

tan A = 9/40

5.  Given 15cot A= 8, find sin A and sec A.

Solution

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 5

We have, 15cot A = 8

Required to find: sin A and sec A

As 15 cot A = 8

⇒ cot A = 8/15 …….(1)

And we know,

cot A = 1/tan A

Also, by definition,

Cot A = Base side adjacent to ∠A/ Perpendicular side opposite to ∠A …. (2)

On comparing equations (1) and (2), we get

The base side adjacent to ∠A = 8

The perpendicular side opposite to ∠A = 15

So, by using Pythagoras’ theorem to △ABC, we have

AC2 = AB2 +BC2

Substituting values for sides from the figure,

AC2 = 82 + 152

AC2 = 64 + 225

AC2 = 289

AC = √289

AC = 17

Therefore, hypotenuse =17

By definition,

sin A = Perpendicular/Hypotenuse

⇒ sin A= BC/AC

sin A= 15/17 (using values from the above)

Also,

sec A= 1/ cos A

⇒ secA = Hypotenuse/ Base side adjacent to ∠A

∴ sec A= 17/8

 6. In △PQR, right-angled at Q, PQ = 4cm and RQ = 3 cm. Find the value of sin P, sin R, sec P and sec R.

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 6

Given:

△PQR is right-angled at Q.

PQ = 4cm

RQ = 3cm

Required to find: sin P, sin R, sec P, sec R

Given △PQR,

By using Pythagoras’ theorem to △PQR, we get

PR2 = PQ2 +RQ2

Substituting the respective values,

PR2 = 42 +32

PR2 = 16 + 9

PR2 = 25

PR = √25

PR = 5

⇒ Hypotenuse =5

By definition,

sin P = Perpendicular side opposite to angle P/ Hypotenuse

sin P = RQ/ PR

⇒ sin P = 3/5

And,

sin R = Perpendicular side opposite to angle R/ Hypotenuse

sin R = PQ/ PR

⇒ sin R = 4/5

And,

sec P=1/cos P

secP = Hypotenuse/ Base side adjacent to ∠P

sec P = PR/ PQ

⇒ sec P = 5/4

Now,

sec R = 1/cos R

secR = Hypotenuse/ Base side adjacent to ∠R

sec R = PR/ RQ

⇒ sec R = 5/3

7. If cot θ = 7/8, evaluate

    (i)   (1+sin θ)(1–sin θ)/ (1+cos θ)(1–cos θ)

    (ii)  cot2 θ

Solution:

(i) Required to evaluate:
R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 7, given = cot θ = 7/8

Taking the numerator, we have

(1+sin θ)(1–sin θ) = 1 – sin2 θ [Since, (a+b)(a-b) = a2 – b2]

Similarly,

(1+cos θ)(1–cos θ) = 1 – cos2 θ

We know that,

sin2 θ + cos2 θ = 1

⇒ 1 – cos2 θ = sin2 θ

And,

1 – sin2 θ = cos2 θ

Thus,

(1+sin θ)(1 –sin θ) = 1 – sin2 θ = cos2 θ

(1+cos θ)(1–cos θ) = 1 – cos2 θ = sin2 θ


R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 8

= cos2 θ/ sin2 θ

= (cos θ/sin θ)2

And, we know that (cos θ/sin θ) = cot θ


R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 9

= (cot θ)2

= (7/8)2

= 49/ 64

(ii) Given,

cot θ = 7/8

So, by squaring on both sides, we get

(cot θ)2 = (7/8)2

∴ cot θ2 = 49/64

8. If 3cot A = 4, check whether (1–tan2A)/(1+tan2A) = (cos2A – sin2A) or not.

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 10

Given,

3cot A = 4

⇒ cot A = 4/3

By definition,

tan A = 1/ Cot A = 1/ (4/3)

⇒ tan A = 3/4

Thus,

The base side adjacent to ∠A = 4

The perpendicular side opposite to ∠A = 3

In ΔABC, Hypotenuse is unknown.

Thus, by applying Pythagoras’ theorem in ΔABC,

We get

AC= AB2 + BC2

AC2 = 42 + 32

AC2 = 16 + 9

AC2 = 25

AC = √25

AC = 5

Hence, hypotenuse = 5

Now, we can find that

sin A = opposite side to ∠A/ Hypotenuse = 3/5

And,

cos A = adjacent side to ∠A/ Hypotenuse = 4/5

Taking the LHS,

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 11

Thus, LHS = 7/25

Now, taking RHS

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 12

9. If tan θ = a/b, find the value of (cos θ + sin θ)/ (cos θ – sin θ)

Solution:

Given,

tan θ = a/b

And we know by definition that

tan θ = opposite side/ adjacent side

Thus, by comparison

Opposite side = a and adjacent side = b

To find the hypotenuse, we know that by Pythagoras’ theorem that

Hypotenuse2 = opposite side2 + adjacent side2

⇒ Hypotenuse = √(a2 + b2)

So, by definition

sin θ = opposite side/ Hypotenuse

sin θ = a/ √(a2 + b2)

And,

cos θ = adjacent side/ Hypotenuse

cos θ = b/ √(a2 + b2)

Now,

After substituting for cos θ and sin θ, we have

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 13

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 14

Hence Proved.

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 15

10. If 3 tan θ = 4, find the value of

Solution:

Given, 3 tan θ = 4

⇒ tan θ = 4/3

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 16

From, let’s divide the numerator and denominator by cos θ.

We get,

(4 – tan θ) / (2 + tan θ)

⇒ (4 – (4/3)) / (2 + (4/3)) [using the value of tan θ]

⇒ (12 – 4) / (6 + 4) [After taking LCM and cancelling it]

⇒ 8/10 = 4/5

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 17

∴ = 4/5

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 18

11. If 3 cot θ = 2, find the value of

Solution:

Given, 3 cot θ = 2

⇒ cot θ = 2/3

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 19

From, let’s divide the numerator and denominator by sin θ.

We get,

(4 –3 cot θ) / (2 + 6 cot θ)

⇒ (4 – 3(2/3)) / (2 + 6(2/3)) [using the value of tan θ]

⇒ (4 – 2) / (2 + 4) [After taking LCM and simplifying it]

⇒ 2/6 = 1/3

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 20

∴ = 1/3

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 21

12. If tan θ = a/b, prove that

Solution:

Given, tan θ = a/b

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 22

From LHS, let’s divide the numerator and denominator by cos θ.

And we get,

(a tan θ – b) / (a tan θ + b)

⇒ (a(a/b) – b) / (a(a/b) + b) [using the value of tan θ]

⇒ (a2 – b2)/b2 / (a2 + b2)/b2 [After taking LCM and simplifying it]

⇒ (a2 – b2)/ (a2 + b2)

= RHS

– Hence Proved

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 23

13. If sec θ = 13/5, show that

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 24

Given,

sec θ = 13/5

We know that,

sec θ = 1/ cos θ

⇒ cos θ = 1/ sec θ = 1/ (13/5)

∴ cos θ = 5/13 ……. (1)

By definition,

cos θ = adjacent side/ hypotenuse ….. (2)

Comparing (1) and (2), we have

Adjacent side = 5 and hypotenuse = 13

By Pythagoras’ theorem,

Opposite side = √((hypotenuse) 2 – (adjacent side)2)

= √(132 – 52)

= √(169 – 25)

= √(144)

= 12

Thus, the opposite side = 12

By definition,

tan θ = opposite side/ adjacent side

∴ tan θ = 12/ 5

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 25

From, let’s divide the numerator and denominator by cos θ.

We get,

(2 tan θ – 3) / (4 tan θ – 9)

⇒ (2(12/5) – 3) / (4(12/5) – 9) [using the value of tan θ]

⇒ (24 – 15) / (48 – 45) [After taking LCM and cancelling it]

⇒ 9/3 = 3

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 26

∴ = 3

14. If cos θ = 12/13, show that sin θ(1 – tan θ) = 35/156

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 27

Given, cos θ = 12/13…… (1)

By definition, we know that

cos θ = Base side adjacent to ∠θ / Hypotenuse……. (2)

When comparing equations (1) and (2), we get

Base side adjacent to ∠θ = 12 and Hypotenuse = 13

From the figure,

Base side BC = 12

Hypotenuse AC = 13

Side AB is unknown here, and it can be found by using Pythagoras’ theorem.

Thus, by applying Pythagoras’ theorem,

AC2 = AB2 + BC2

132 = AB2 + 122

Therefore,

AB2 = 13– 122

AB2 = 169 – 144

AB2 = 25

AB = √25

AB = 5 …. (3)

Now, we know that

sin θ = Perpendicular side opposite to ∠θ / Hypotenuse

Thus, sin θ = AB/AC [from figure]

⇒ sin θ = 5/13… (4)

And, tan θ = sin θ / cos θ = (5/13) / (12/13)

⇒ tan θ = 12/13… (5)

Taking L.H.S we have

L.H.S = sin θ (1 – tan θ)

Substituting the value of sin θ and tan θ from equations (4) and (5),

We get

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 28

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 29

15.

Solution:

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 30

Given, cot θ = 1/3……. (1)

By definition, we know that

cot θ = 1/ tan θ

And, since tan θ = perpendicular side opposite to ∠θ / Base side adjacent to ∠θ

⇒ cot θ = Base side adjacent to ∠θ / perpendicular side opposite to ∠θ …… (2)

[Since they are reciprocal to each other]

On comparing equations (1) and (2), we get

The base side adjacent to ∠θ = 1 and the perpendicular side opposite to ∠θ = √3

Therefore, the triangle formed is,

On substituting the values of known sides as AB = √3 and BC = 1,

AC2 = (√3) + 1

AC2 = 3 + 1

AC= 4

AC = √4

Therefore, AC = 2 …   (3)

Now, by definition

sin θ = Perpendicular side opposite to ∠θ / Hypotenuse = AB / AC

⇒ sin θ = √3/ 2 ……(4)

And, cos θ = Base side adjacent to ∠θ / Hypotenuse = BC / AC

⇒ cos θ = 1/ 2 ….. (5)

Now, taking L.H.S., we have

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 31

Substituting the values from equations (4) and (5), we have

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 32

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 33

16.

Solution:

Given, tan θ = 1/ √7 …..(1)

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 34

By definition, we know that

tan θ = Perpendicular side opposite to ∠θ / Base side adjacent to ∠θ ……(2)

On comparing equations (1) and (2), we have

The perpendicular side opposite to ∠θ = 1

The base side adjacent to ∠θ = √7

Thus, the triangle representing ∠ θ is,

Hypotenuse AC is unknown, and it can be found by using Pythagoras’ theorem.

By applying Pythagoras’ theorem, we have

AC= AB2 + BC2

AC= 12 + (√7)2

AC 2 = 1 + 7

AC2 = 8

AC = √8

⇒ AC = 2√2

By definition,

sin θ = Perpendicular side opposite to ∠θ / Hypotenuse = AB / AC

⇒ sin θ = 1/ 2√2

And, since cosec θ = 1/sin θ

⇒ cosec θ = 2√2 …….. (3)

Now,

cos θ = Base side adjacent to ∠θ / Hypotenuse = BC / AC

⇒ cos θ = √7/ 2√2

And, since sec θ = 1/ sin θ

⇒ sec θ = 2√2/ √7 ……. (4)

Taking the L.H.S of the equation,

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 35

Substituting the value of cosec θ and sec θ from equations (3) and (4), we get

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 36

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 37

17. If sec θ = 5/4, find the value of

Solution:

Given,

sec θ = 5/4

We know that,

sec θ = 1/ cos θ

⇒ cos θ = 1/ (5/4) = 4/5 …… (1)

By definition,

cos θ = Base side adjacent to ∠θ / Hypotenuse …. (2)

On comparing equations (1) and (2), we have

Hypotenuse = 5

The base side adjacent to ∠θ = 4

Thus, the triangle representing ∠ θ is ABC.

The perpendicular side opposite to ∠θ, AB, is unknown, and it can be found by using Pythagoras’ theorem.

By applying Pythagoras’ theorem, we have

AC= AB2 + BC2

AB= AC2 + BC2

AB2 = 52 – 42

AB2 = 25 – 16

AB = √9

⇒ AB = 3

By definition,

sin θ = Perpendicular side opposite to ∠θ / Hypotenuse = AB / AC

⇒ sin θ = 3/ 5 …..(3)

Now, tan θ = Perpendicular side opposite to ∠θ / Base side adjacent to ∠θ

⇒ tan θ = 3/ 4 ……(4)

And, since cot θ = 1/ tan θ

⇒ cot θ = 4/ 3 ……(5)

Now,

Substituting the value of sin θ, cos θ, cot θ and tan θ from the equations (1), (3), (4) and (5), we have,

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 38

= 12/7

Therefore,

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 39

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 40

18. If tan θ = 12/13, find the value of

Solution:

Given,

tan θ = 12/13 …….. (1)

We know that, by definition,

tan θ = Perpendicular side opposite to ∠θ / Base side adjacent to ∠θ …… (2)

On comparing equations (1) and (2), we have

The perpendicular side opposite to ∠θ = 12

The base side adjacent to ∠θ = 13

Thus, in the triangle representing ∠ θ, we have,

Hypotenuse AC is unknown, and it can be found by using Pythagoras’ theorem.

So, by applying Pythagoras’ theorem, we have

AC= 122 + 132

AC 2 = 144 + 169

AC2 = 313

⇒ AC = √313

By definition,

sin θ = Perpendicular side opposite to ∠θ / Hypotenuse = AB / AC

⇒ sin θ = 12/ √313…..(3)

And, cos θ = Base side adjacent to ∠θ / Hypotenuse = BC / AC

⇒ cos θ = 13/ √313 …..(4)

Now, substituting the value of sin θ and cos θ from equations (3) and (4), respectively, in the equation below,

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 41

Therefore,

R D Sharma Solutions For Class 10 Maths Chapter 5 Trigonometric Ratios ex 5.1 - 42


Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer