Evaluate ∫0π2(√sinx)(√sinx+√cosx)dx
π4
π2
0
1
Explanation for the correct option:
Let I=∫0π2sinxsinx+cosxdx ……(1)
=∫0π2sinπ2-xsinπ2-x+cosπ2-xdx ∵∫abf(x)dx=∫abf(a+b-x)dx
I=∫0π2cosxcosx+sinxdx …….(2) ∵sin(π2-θ)=cosθ,cos(π2-θ)=sinθ
By adding equation (1) and (ii), we get
⇒2I=∫0π2sinx+cosxsinx+cosxdx
⇒2I=∫0π21dx
⇒2I=x0π2
⇒2I=π2
⇒ I=π4
Hence, Option ‘A’ is Correct.