Evaluate ∫-11log(1-x)+(1+x)dx
Step 1. Find the value of ∫-11log[(1-x)+(1+x)]dx:
Let I=∫-11log(1-x)+(1+x)dx
Let x=cos2θ
differentiate it with respect to θ
dx=-2sin2θdθ
When x=-1,cos2θ=cosπ ∵cosπ=-1
⇒ 2θ=π
⇒ θ=π2
When x=1,cos2θ=cos0 ∵cos0=1
⇒ 2θ=0
⇒ θ=0
Now, I=∫π20ln(1-cos2θ)+(1+cos2θ)-2sin2θdθ
⇒ I=∫π20ln2sin2θ+2cos2θ-2sin2θdθ
⇒ I=∫π20ln2sinθ+2cosθ-2sin2θdθ
⇒ I=∫π20ln2sinθ+cosθ-2sin2θdθ
⇒ I=∫π20ln2+lnsinθ+cosθ-2sin2θdθ ; ∵log(ab)=loga+logb
⇒ I=∫π20ln2-2sin2θdθ+∫π20lnsinθ+cosθ-2sin2θdθ
⇒ I=ln2∫π20-2sin2θdθ+∫π20lnsinθ+cosθ-2sin2θdθ
⇒ I=ln2-2-cos2θ2π20-2∫π20lnsinθ+cosθsin2θdθ
⇒ I=ln2cos2θπ20-2∫π20lnsinθ+cosθsin2θdθ
Step 2. Apply the formula of integration by parts, we get
∵∫(u·v)dx=u∫vdx-∫{dudx.∫vdx}dx
⇒I=ln2cos0-cosπ-2lnsinθ+cosθ∫sin2θ-∫dlnsinθ+cosθdx.∫sin2θdθ
⇒I=ln21--1-2lnsinθ+cosθ∫sin2θ-∫dlnsinθ+cosθdx.∫sin2θdθ
⇒I=2ln2+I1
I1=-2lnsinθ+cosθ∫sin2θ-∫dlnsinθ+cosθdx.∫sin2θdθ
⇒I1=-2lnsinθ+cosθ-cos2θ2π20+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ
⇒I1=-2lnsin0+cos0-cos02-lnsinπ2+cosπ2-cosπ22+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ
⇒I1=-2ln1-12-ln1+012+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ
⇒I1=-20-0+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ
⇒I1=0+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ
⇒I1=2∫π20cosθ-sinθcosθ+sinθ-12cos2θdθ
⇒I1=-2×-12∫0π2cosθ-sinθcosθ+sinθcos2θdθ
⇒I1=∫0π2cosθ-sinθcosθ+sinθcos2θ-sin2θdθ
⇒I1=∫0π2cosθ-sinθ2dθ ∵a2-b2=(a+b)(a-b)
⇒I1=∫0π2cos2θ+sin2θ-2sinθcosθdθ ∵(a-b)2=a2+b2-2ab
⇒I1=∫0π21-sin2θdθ ∵sin2θ=2sinθcosθ
⇒I1=∫0π2dθ-∫0π2sin2θdθ
⇒I1=θ0π2--cos2θ20π2
⇒I1=π2-0+12cosπ-cos0
⇒I1=π2+12-1-1
⇒I1=π2-1
Step 3. Put the value of I1 in I=2ln2+I1, we get
I=2ln2+I1
⇒I=2ln2+π2-1
⇒I=2ln2-1+π2
Hence, ∫-11log[(1-x)+(1+x)]dx=2ln2-1+π2.