Evaluate ∑r=020r2Cr20
Step 1. Solve the given expression.
∑r=020r2Cr20
=∑r=120r2.20rCr-119
=20∑r=120rCr-119
Step 2. By adding and subtracting 1, we get
=20∑r=120r-1+1.Cr-119
=20∑r=120r-1.Cr-119+∑r=120Cr-119
=20∑r=220r-1.19r-1Cr-218+∑r=120Cr-119
=20∑r=22019Cr-218+∑r=120Cr-119
=2019(2)18+219
=20.21819+2
=20.21.218
Hence, the solution of ∑r=020r2Cr20 is 20.21.218
Evaluate as a limit of a sum.