Find sum of all possible values of θ in the interval -π2,π for which 3+2isinθ1-2isinθ is purely imaginary;
π3
π
2π3
π2
Find the sum of all possible values of θ:
Let z=3+2isinθ1-2isinθ
Rationalize it:
z=3+2isinθ1-2isinθ×1+2isinθ1+2isinθ
=3-4sin2θ+i8sinθ1+4sin2θ
Now, for z to be purely imaginary, Re(z)=0
⇒3-4sin2θ1+4sin2θ=0
⇒ sin2θ=34
⇒ sinθ=32
As θ∈-π2,π=±π3,2π3
Sum of all values of θ=2π3
Hence, Option ‘C’ is Correct.