If y=∑k=16kcos-1{35coskx-45sinkx}, then dydxatx=0 is
Step1. Simplifying the term:
Given,
y=∑k=16kcos-1{35coskx-45sinkx}...(i)
Let cosθ=35sinθ=45
Therefore, our equation becomes
kcos-1{cosθcoskx-sinθsinkx}=kcos-1[cos(kx+θ)]=k(kx+θ)=k2x+kθ
Step2. Finding differentiation:
Equation (i) can be written as
y=∑k=16[k2x+kθ]
Therefore,
dydx=d∑k=16[k2x+kθ]dx=∑k=16[d(k2x+kθ)dx]=∑k=16[d(k2x)dx+d(kθ)dx]=∑k=16[k2dxdx+0]=∑k=16[k2]=12+22+32+42+52+62=6×(6+1)×(6×2+1)6[n×(n+1)×(2n+1)6]=91
Hence, dydxatx=0 is 91.