wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

For a complex numberz, let Re(z) denote the real part of z. Let S be the set of all complex numbers z satisfyingz4-|z|4=4iz2, wherei=(-1). Then the minimum possible value of|z1-z2|2, wherez1,z2SwithRe(z1)>0 andRe(z2)<0, is _____


Open in App
Solution

Step 1: Simplifying the given equation:

z4-{|z|2}2=4iz2z4-{zz¯}2=4iz2(z.z¯=|z|2)z4-z2(z¯)2=4iz2z2[z2-(z¯)2]-4iz2=0z2=0orz2-(z¯)2-4i=0z2=0orz2-(z¯)2=4i

Step 2: Putz=x+iy in the above expression:

z2-(z¯)2=4i(x+iy)2-(x-iy)2=4i4xyi=4ixy=1

Step 3: Find the simplified expression of|z1-z2|2:

|z1-z2|2=(z1-z2)(z1-z2)|z1-z2|2=(x1-x2)2+(y1-y2)2|z1-z2|2=x12+x22-2x1x2+y12+y22-2y1y2

Step 4: Apply A.M and G.M to the above numbers:

Considerx12,x22,y12,y22,x1(-x2),x1(-x2),y1(-y2)&y1(-y2) are different numbers, then A.M and G.M of these numbers are as follows,

x12+x22+y12+y22+x1(-x2)+x1(-x2)+y1(-y2)+y1(-y2)8x12.x22.y12.y22.x1(-x2).x1(-x2).y1(-y2).y1(-y2)8x12+x22-2x1x2+y12+y22-2y1y28x12.x22.y12.y22.x12.x22.y12.y228|z1-z2|28(1)18x1y1=1&x2y2=1

Hence, the minimum value of|z1-z2|2 is 8


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Exponents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon