For non-negative integers s andr, let
sr=s!r!s-r!ifr≤sifr>sForpositiveintegersmandn,letgm,n=∑p=0m+nfm,n,pn+ppWhereforanynonnegativeintegerp,fm,n,p=∑i=0pmin+ipp+np-i.
Then which of the following statements is/are TRUE?
(m,n)=(n,m)forallpositiveintegersm,n
(m,n+1)=(m+1,n)forallpositiveintegersm,n
(2m,2n)=2(m,n)forallpositiveintegersm,n
(2m,2n)=((m,n))2forallpositiveintegersm,n
Explanation for the correct answers:
Step1. Calculate the value of fm,n,p:
Given,
fm,n,p=∑i=0pmin+ipp+np-i=∑i=0piCmn+iCppC-ip+n[∵(nr)=rCn]=∑i=0piCmn+i!n+i-p!p!p+n!p+n-p+i!p-i!∵rCn=(n!(n-r)!r!)=∑i=0piCmn+i!n+i-p!p!n+p!n+i!p-i!=∑i=0piCm1n+i-p!p!n+p!p-i!×n!n![Multiplyanddividebyn!]=∑i=0piCmn+p!n!p!n!n+i-p!p-i!=∑i=0piCmn+p!n+p-p!p!n!n-p-i!p-i!=∑i=0piCmpCn+ppC-in=pCn+p∑i=0piCmpC-inTakeouttheconstanttermoutside=pCn+p0CmpCn+1CmpC-1n+........+pCm0Cn=pCn+ppCm+n∵Coefficientxrin(1+x)m(1+x)n=rCm+n∴fm,n,p=pCn+ppCm+n____(1)
Step2. Calculate the value of gm,n:
gm,n=∑p=0m+nfm,n,pn+pp=∑p=0m+npCn+ppCm+npCn+p[Substitutethevalueoff(m,n,p)]=∑p=0m+npCm+n=(1+1)m+n∵oCm+n+1Cm+n+.......+mC+nm+n=(1+1)m+n∴gm,n=2m+n
Step3. Check which statement is true:
Agm,n=2m+n=2n+m=g(n,m)B.gm,n+1=2m+n+1=2m+1+n=gm+1,nC.g2m,2n=22m+2n=22(m+n)≠g2m,nD.g2m,2n=22m+2n=22(m+n)=2m+n2=gm,n2
Hence, Option(A),(B), (D) are correct answer.