CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
8
You visited us 8 times! Enjoying our articles? Unlock Full Access!
Question

For real numbers α,β,γandδ, if

x2-1+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=αlogetan-1x2+1x+βtan-1γx2+1x+δtan-1x2+1x

where C is an arbitrary constant, then the value of 10(α+βγ+δ) is equal to


Open in App
Solution

Step1. Divide the integration into parts:

I=x2-1+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=x2-1dxx4+3x2+1tan-1x2+1x+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=x2-1dxx4+3x2+1tan-1x2+1x+dxx4+3x2+1=I1+I2WhereI1=(x2-1)dx(x4+3x2+1)tan-1(x2+1x)andI2=dx(x4+3x2+1)

Step2. Calculate the value of I1:

I1=(x2-1)dx(x4+3x2+1)tan-1(x2+1x)=(x2-1)dxx2(x2+3+1x2)tan-1(x2+1x)=(x2-1x2)dx(x2+3+1x2)tan-1(x2+1x)=(1-1x2)dx(x2+2x1x+1x2+1)tan-1(x2+1x)=(1-1x2)dx(x+1x2+12)tan-1(x+1x)=dttSubstitutetan-1(x+1x)=t(1-1x2)dx((x+1x)2+12)=dt=loget+c1dtt=loge|t|=logetan-1(x+1x)+c1___(1)

Step3.Calculate the value of I2:

I2=dx(x4+3x2+1)=dxx2(x2+3+1x2)=1x2×22dx(x2+3+1x2)=122x2+1-1dx(x2+3+1x2)=121x2+1-1+1x2dx(x2+3+1x2)=121x2+1-1-1x2dx(x2+3+1x2)=121x2+1dx(x2+3+1x2)-121-1x2dx(x2+3+1x2)=121+1x2dx(x2-2x1x+1x2+5)-121-1x2dx(x2+2x1x+1x2+1)=121+1x2dxx-1x2+(5)2-121-1x2dx(x+1x)2+12=12duu2+(5)2-12dv(v)2+12Substitutex-1x=u(1+1x2)dx=duandx+1x=v(1-1x2)dx=dv=1215tan-1u5-tan-1v+c2dx(x)2+(a)2=1atan-1(xa)=1215tan-1x-1x5-tan-1x+1x+c2=125tan-1x2-15x-12tan-1x2+1x+c2_______(2)

Step4. Calculate the value of α,β,γ,δ:

x2-1+tan-1x2+1xdxx4+3x2+1tan-1x2+1x=αlogetan-1x2+1x+βtan-1γx2+1x+δtan-1x2+1xlogetan-1x+1x+125tan-1x2-15x-12tan-1x2+1x+C=αlogetan-1x2+1x+βtan-1γx2+1x+δtan-1x2+1xα=1[Substitutethevaluefrom(1)and(2)]β=125γ=15[Comparelefthandsideandrighthandside]δ=-12

Step5. Calculate the value of 10α+βγ+δ

10α+βγ+δ=101+12515+-12[Substitutethevalueofα,β,γ,δ]=101+110-12=10610=6

Hence, the value of10(α+βγ+δ)=6


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon