wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the matrix A=10002030-1satisfies the equation A20+ɑA19+βA=100040001for some real numbers ɑandβ,thenβ-ɑ is equal to_________.


Open in App
Solution

Step1. Calculate the value of A19andA20:

A=10002030-1A2=10002030-1×10002030-1=100040001=1000220001A3=10002030-1×10002030-1×10002030-1=100040001×10002030-1=10008030-1=100023030-1A4=A2×A2=100040001×100040001=1000160001=1000240001

Therefore,

A19=1000219030-1A20=10002200001

Step2. Calculate the value of β-α:

A20+ɑA19+βA=10004000110002200001+α1000219030-1+β10002030-1=1000400011+α+β000220+α219+2β03α+3β01-α-β=100040001

Therefore,

1+α+β=1,220+α219+2β=4,3α+3β=0,1-α-β=1α+β=0α=-β

Step 3. Replace α=-β in given equation:

220+α219+2β=4

220+-β219+2β=4

β=4-2202-219

β=-1048572-524286

β=2

α=-2

β-α=2--2=4

Hence, the value of β-α=4 is the answer


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Term
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon