If the matrix A=10002030-1satisfies the equation A20+ɑA19+βA=100040001for some real numbers ɑandβ,thenβ-ɑ is equal to_________.
Step1. Calculate the value of A19andA20:
A=10002030-1A2=10002030-1×10002030-1=100040001=1000220001A3=10002030-1×10002030-1×10002030-1=100040001×10002030-1=10008030-1=100023030-1A4=A2×A2=100040001×100040001=1000160001=1000240001
Therefore,
A19=1000219030-1A20=10002200001
Step2. Calculate the value of β-α:
A20+ɑA19+βA=100040001⇒10002200001+α1000219030-1+β10002030-1=100040001⇒1+α+β000220+α219+2β03α+3β01-α-β=100040001
⇒1+α+β=1,220+α219+2β=4,3α+3β=0,1-α-β=1⇒α+β=0⇒α=-β
Step 3. Replace α=-β in given equation:
220+α219+2β=4
⇒220+-β219+2β=4
⇒ β=4-2202-219
⇒ β=-1048572-524286
⇒ β=2
⇒ α=-2
∴β-α=2--2=4
Hence, the value of β-α=4 is the answer
If k>1 and the determinant of the matrix A2 is k2, then |α|=
A=kkαα0αkα00k