Forx>0, iff(x)=∫1xloget(1+t)dt, then f(e)+f1e=?
1/2
-1
1
0
Explanation for the correct option:
Find the value of f(e)+f(1e)=? :
Given That,
f(x)=∫1xloget(1+t)dt
So,
f(e)+f1e=∫1elnt(1+t)dt+∫11/elnt(1+t)dt=I1+I2
whereI1=∫1elnt(t+1)andI2=∫11/elnt(t+1)
I2=∫11/elnt(1+t)dt[Putt=1z⇒dt=-dzz2]=∫1e-lnz(1+1z)×-dzz2=∫1elnzz(z+1)dz=∫1elnz(z+1-z)z(z+1)dz=∫1elnzz-lnz(z+1)dz
f(e)+f1e=∫1elnt(1+t)dt+∫1elntt-∫1elnt(1+t)dt=∫1elntt[Putlnt=u⇒1tdt=du]=∫01udu=u2201=12
Hence the correct option is (A).