wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you multiply complex numbers in trigonometry?


Open in App
Solution

Step 1. Formation of the trigonometric form of complex numbers.

z=rcos(θ)+irsin(θ)

z=rcosθ+isinθ

Where, r=magnitude or modulus and θ=argumnet of z

r=|z|=(x2+y2)

x=rcos(θ)y=rsin(θ)

Step 2. Finding the multiplication of complex numbers in polar form:

If z1=r1(cosθ+isinθ) and

z2=r2(cosφ+isinφ) are two complex numbers in polar form. Then the multiplication of the two complex numbers can be determined by:

The multiplication of z1 and z2 is

z1z2=r1cosθ+isinθ×r2cosφ+isinφ

z1z2=r1r2cosθ+isinθ×cosφ+isinφ

z1z2=r1r2cosθcosφ+icosθsinφ+isinθcosφ+i2sinθsinφ

z1z2=r1r2cosθcosφ+icosθsinφ+isinθcosφ-sinθsinφ (i2=-1)

z1z2=r1r2cosθcosφ-sinθsinφ+icosθsinφ+sinθcosφ

z1z2=r1r2cosθcosφ-sinθsinφ+icosθsinφ+sinθcosφ Using [cos(A+B)=cos(A)cos(B)-sin(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B)]

z1z2=r1r2cosθcosφ-sinθsinφ+icosθsinφ+sinθcosφ

z1z2=r1r2(cos(θ+φ)+isin(θ+φ))


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon