If 15sin4θ+10cos4θ=6, for some θ∈R then the value of 27sec6θ+8cosec6θ is equal to:
250
500
400
350
Explanation for correct option:
Step-1: Simplify the given data.
Given, 15sin4θ+10cos4θ=6,
⇒ 15sin4θ+101-sin2θ2=6,
⇒15sin4θ+1012+sin4θ-2sin2θ=6,
⇒ 25sin4θ-20sin2θ+4=0,
⇒ 5sin2θ2-2×5×2×sin2θ+22=0,
⇒ 5sin2θ-22=0
⇒ sin2θ=25
⇒ cos2θ=1-25
⇒ cos2θ=35
Step-2: Finding the value of 27sec6θ+8cosec6θ.
⇒27sec6θ+8cosec6θ=27×533+8×523
⇒27sec6θ+8cosec6θ=27×12527+8×1258
⇒27sec6θ+8cosec6θ=250
Hence, correct answer is option (A).
If θ lies in the first quadrant and cos θ=817, then the value of cos(30∘+θ)+cos(45∘−θ)+cos(120∘−θ) is