If 2f(x)-3f(1x)=x,then∫12f(x)dx=
35log2
-35(1+log2)
-35log2
None of these
The explanation for the correct options:
Step1. Given function:
Given that,
2f(x)-3f1x=x....(i)
x→1x
2f1x-3f(x)=1x......(ii)
Adding equation(i)×2+equation(ii)×3
22f(x)-3f1x+32f1x-3fx=2x+3x4fx-6f1x+6f1x-9fx=2x+3x-5fx=2x+3x
⇒f(x)=-2x2+35x
Step2. Find the integration:
So, ∫12f(x)dx=-15∫122x2+3xdx [∵∫xdx=x22+c][∵∫1xdx=logx+c]
=-15[x2+3lnx]12
=-35(1+ln2)
Hence, Option(B) is the correct answer.
If ∫f(x)dx=F(x), then ∫f(5x)dx=F(5x)5+C