If 3f(x)-f1x=logx4, then f(e-x) is
1+x
1x
x
-x
Explanation for the correct option:
Step 1. Find the value of f(e-x):
Given, 3f(x)-f1x=logx4
⇒ 3f(x)–f1x=4logx …..(i) ∵logmx=xlogm
Step 2. Replace x by 1x:
⇒3f1x–f(x)=4log1x
⇒3f1x–f(x)=-4logx …..(ii) ∵loga-logb=log(ab)
Multiply equation(i) by 3:
⇒9f(x)–3f1x=12logx …..(iii)
Step 3. Add equation(ii) and (iii):
⇒ 8f(x)=8logx
⇒ f(x)=logx
⇒f(e-x)=loge-x=-x
∴f(e-x) is equal to -x.
Hence, Option ‘D’ is Correct.