If a,b,c are consecutive positive integers and log(1+ac)=2k, then the value of k is
loga
logb
2
1
Explanation for the correct option:
Find the value of :
Given log(1+ac)=2k and a,b,c are consecutive positive integers
Let, a=n-1,b=n&c=n+1,wheren>1.
Then, log(1+ac)=2k can be written as,
log(1+(n-1)(n+1))=2k
⇒ log(1+n2–1)=2k
⇒ logn2=2k
⇒ 2logn=2k
⇒ logn=k
⇒ logb=k
Hence, correct option is (B)