(1) A.P
(2) G.P only when x > 0
(3) G.P if x < 0
(4) G.P for all x ≠ 0
Solution:
Since a, b, c are in AP
2b = a+c
(2bx +1)2 = (22bx +2)
= 2(a+c)x +2
= 2ax+1 × 2cx+1
=> 2ax +1 , 2bx +1, 2cx +1 are in GP.
Hence option (4) is the answer.
(1) A.P
(2) G.P only when x > 0
(3) G.P if x < 0
(4) G.P for all x ≠ 0
Solution:
Since a, b, c are in AP
2b = a+c
(2bx +1)2 = (22bx +2)
= 2(a+c)x +2
= 2ax+1 × 2cx+1
=> 2ax +1 , 2bx +1, 2cx +1 are in GP.
Hence option (4) is the answer.