If C is a point at which Rolle’s theorem holds for the function, f(x)=loge(x2+α7x) in the interval [3,4], whereα∈𝐑, then f′′(c)is equal to
-124
−112
37
112
Explanation for the correct options:
Finding the value of function:
f(3)=f(4)
ln(9+α21)=ln(16+α28)
⇒9+α/21=16+α/28
⇒36+4α=48+3α
⇒α=12
Now,
f(x)=ln((x2+12)7x)f'(x)=[7x(x2+12)]×(7x×2x−(x2+12)×7)(7x)2
f'(x)=(x2–12)(x(x2+12))
f'(c)=0c=23
f''(x)=(−x4+48x2+144)x2(x2+12)2
Therefore,
f''(c)=112
Hence, the correct option is (D)
If A={a,b,c}, B={b,c,d} andC={a,d,c} then (A-B)×(B∩C) is equal to
If C1,C2,C3are the usual binomial coefficients and S=C1+2C2+3C3+...+nCn, then S equals
If C0,C1,.....,C∞ denote the binomial coefficients in the expansion of(1+x)n. Then, the value of C1-C22+C33-C44+....(up to n terms) is
If C be the centroid of the triangle having vertices(3,-1),(1,3) and (2,4). Let P be the point of intersection of the lines x+3y-1=0and3x-y+1=0, then the line passing through the pointsCandP also passes through the point: