If A→·B→=A→×B→. Find A→-B→
A-B
A2+B2-2AB
A+B
Step 1: Given data
A→·B→=A→×B→
To find A→-B→
Step 2: Calculation
A→·B→=A→×B→⇒ABcosθ=ABsinθA→·B→=ABcosθandA→×B→=ABsinθ⇒cosθ=sinθ⇒θ=45°
The angle between the vectors, θ=45°
Therefore,
A→-B→=A2+B2+2ABcosθA→-B→=A2+B2+2ABcos(45°)A→-B→=A2+B2+2AB12A→-B→=A2+B2+2AB
Therefore we get, A→-B→=A2+B2+2AB
Hence, option D is correct.