If limx→0αx(1+x+x22!+x33!+...)-β(x-x22+x33+...)+γx2(1-x+x22!-x33!+...)x3=10 .
Find the value of α+β+γ
Finding the value of α+β+γ :
Given that limx→0αx(1+x+x22!+x33!+...)-β(x-x22+x33+...)+γx2(1-x+x22!-x33!+...)x3=10
For limit to exist
α–β=0,α+β2+γ=0, α2–β3–γ=10…(i)
⇒ α=β,γ=-3α2
Put the value of γ and β in equation (i)
α2-α3+3α2=10
⇒ α6+3α2=10
⇒ α+9α6=10
⇒ α=6
⇒α=6,β=6,γ=-9
∴α+β+γ=6+6-9=3
Hence, The value of α+β+γ is 3