If f(2)=4andf'(2)=4. Then, limx→2[xf(2)-2f(x)](x-2)=
Finding the value of :limx→2[xf(2)-2f(x)](x-2)=
Given that f(2)=4andf'(2)=4. and
limx→2[xf(2)-2f(x)](x-2)
If we apply limit value then the value will be indefinite form , (00form)
So ,Applying L 'hospital rule
limx→2[ddxxf(2)-2ddxf(x)]ddx(x-2)=limx→2[4-2f'(x)]1(∵f(2)=4)=limx→2[4-2f'(x)]1=4-2f'(2)(∵f'(2)=4)=4-8=-4
Hence, the value of limx→2[xf(2)-2f(x)](x-2) is -4
If f(x)=cos(log x), then value of f(x) f(4)−12{f(x4)+f(4x)} is