If f(5)=7 and f'(5)=7, then limxβ5[xf(5)-5f(x)]/(x-5)=
35
-35
28
-28
Finding the value:
Step1 : Expressing the given data:
f(5)=7f'(5)=7
limxβ5xf(5)-5f(x)x-5(00form)
Step 2 : Applying L' Hospital's Rule,
=limxβ5f(5)-5f'(x)1-0
=f(5)-5f'(5)
=7-5Γ7=7-35
=-28
Hence, option (D) is correct answer.