If f(x)=f(a-x) and g(x)+g(a-x)=2, then the value of ∫0af(x)g(x)dx is
∫0af(x)dx
∫0ag(x)dx
∫0a[g(x)–f(x)]dx
∫0a[g(x)+f(x)]dx
Explanation for the correct option:
Find the value of ∫0af(x)g(x)dx:
We have,
I=∫0af(x)g(x)dx...(i)
for x→0+a-x, we will get,
I=∫0af(a-x)g(a-x)dxI=∫0af(x)(2-g(x))dx...(ii)
Now we will add equation i and ii we get:-
2I=∫0a2f(x)dxI=∫0af(x)dx
Hence, the correct option is A.