If fx=tanx-tan3x+tan5x-.........∞ with 0<x<π4, then ∫0π4fxdx=
1
0
14
12
-14
Explanation for the correct option:
Step 1: Simplify the given function:
Given that,
fx=tanx-tan3x+tan5x-.........∞
Since the function is in GP, so
fx=tanx1--tan2x[∵Sn=a1-r]=tanxsec2x=sinxcosx1cos2x=22sinxcosx=sin2x2[∵sin2x=2sinxcosx]
Step 2: Finding the value of ∫0π4fxdx:
Now, integrate the simplified function from 0 to π4,
∫0π4fxdx=∫0π4sin2x2dx=-cos2x40π4=14-cos2π4+cos0=14[∵cos0°=1]
Hence, the correct option is C.