If for all real triplets a,b,c,f(x)=a+bx+cx2, then ∫01f(x)dx is equal to
23f(1)+2f12
13f(0)+f12
12f(1)+3f12
16f(0)+f(1)+4f12
Step 1: Given information
f(x)=a+bx+cx2
f(0)=a+b(0)+c(0)2f(1)=a+b(1)+c(1)2f(1)=a+b+cf12=a+b12+c122f12=a+b2+c4
∫01f(x)dx
Step 2: Taking integration for the given equation with respect to x
∫xdx=x22+c∫01f(x)dx=∫01(a+bx+cx2)dx=a+b2+c3=6a+3b+2c6=166a+3b+2c
we can split, 6a+3b+2c as a+a+b+c+4a+2b+c,
∫01f(x)dx=16a+a+b+c+4a+2b+c
∫01f(x)dx=16(a+(a+b+c)+4a+b2+c4
∫01f(x)dx=16f(0)+f(1)+4f12∵a=f(0),a+b+c=f(1),a+b2+c4
Hence, the correct option is option (D).