wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If for x0,y=y(x) is the solution of the differential equation (1+x)dy=1+x2+y-3dx,y(2)=0,then y(3) is equal to:


Open in App
Solution

Explanation for the correct option

Step 1: Finding the value of dydx

(1+x)dy=1+x2+y-3dx(1+x)dydx=1+x2+y-3dydx=(1+x)2(1+x)+(y-3)(1+x)dydx=1+x+(y-3)(1+x)dydx-y1+x=(1+x)-3(1+x)

Step 2: Finding Integration Factor

Integration Factor:

e-11+xdx=e-log(1+x)=11+x

y×I.F=I.F(Q)y×11+x=11+x(1+x)-3(1+x)dxy1+x=1-3(1+x)2dxy1+x=x-(-1)31+x+Cy=(1+x)x+31+x+C

Step 3: Finding C by equating y2=0

y(2)=0

(1+2)2+31+2+C=03(2+1+C)=06+3+3C=03C=-9C=-3

Step 3: Finding y(3)

y3=0

(3+1)3+33+1+C=043+34-3=012+3-12=0y3=3

Hence, the value of y(3)=3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon