If f(x)=sin(a+2)x+sinxx,x<0b,x=0(x+3x2)13-x13x43,x>0is continuous at x=0 then a+2bis equal to:
-2
1
0
Explanation for the correct option:
FInd the value of a+2b.
f(x) is continuous atx=0
limx→0f(x)=b
Now,
b=limh→0f(0+h)=limh→0h+3h213-h13h43=limh→0h13(1+3h)13-1h43=limh→0(1+3h)13-1h=limh→013(1+3h)-23·3
Or
b=1
We can write,
limx→0f(x)=1⇒limh→0sin((a+2)(-h))+sin(-h)h=1⇒a+3=1⇒a=-2⇒a+2b=0
Hence, the correct option is C.