If gx=x2+2x+3fx, f0=5 and limx→0fx-5x=4, then g'0=
22
18
20
25
Explanation for the correct option
Given, gx=x2+2x+3fxThus, fx=gxx2+2x+3
Also given, f0=5
And, limx→0fx-5x=4⇒limx→0gxx2+2x+3-5x=4⇒limx→0gx-5x2+2x+3xx2+2x+3=4⇒limx→0gx-5x2-10x-3x3+2x2+3x=4
Applying L'Hospital's rule i.e.limx→0hxkx=limx→0h'xk'x
⇒limx→0g'x-10x-103x2+4x+3=4⇒g'0-103=4⇒g'0=22
Therefore, g'x=22.
Hence, option(A) is correct.