IfI1=∫0π4sin2xdxandI2=∫0π4cos2xdx, then
I1=I2
I1<I2
I1>I2
I2=I1+π/4
Explanation for correct option:
Find the relation:
Taking I1first,
I1=∫0π4sin2xdx=12∫0π4(1−cos2x)dx[∵1-cos2x=2sin2x]=12x−sin2x20π4=12(π4−sinπ22)−0=12π4−12…(1)
I2=∫0π4cos2xdx=12∫0π4(1+cos2x)dx[∵1+cos2x=2cos2x]=12x+sin2x20π4=12π4+12…(2)
From (1) and (2) it is clear that,
I2>I1
Hence, the correct option is B.