wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=2π-π4π411+esin(x)2-cos(2x)dx then 27I2 equals


Open in App
Solution

Step 1: Simplify the given expression

Given: I=2π-π4π411+esin(x)2-cos(2x)dx1

I=2π-π4π411+esinπ4-π4-x2-cos2π4-π4-xdx[abf(x)dx=abf(a+b-x)dx]I=2π-π4π411+esin-x2-cos2-xdxI=2π-π4π411+e-sinx2-cos2xdx[sin(-x)=sin(x),cos(-x)=cos(x)]I=2π-π4π411+1esinx2-cos2xdxI=2π-π4π411+esinxesinx2-cos2xdxI=2π-π4π4esinx1+esinx2-cos2xdx

Step 2: Simplify further

add equation 1 to both sides

I+I=2π-π4π4esinx1+esinx2-cos2xdx+2π-π4π411+esinx2-cos2xdx2I=2π-π4π41+esinx1+esinx2-cos2xdxI=1π-π4π412-cos2xdxI=1π-π4π411+2sin2xdx[cos2x=1-2sin2(x)]I=1π-π4π41cos2(x)1cos2(x)+2sin2xcos2(x)dxI=1π-π4π4sec2(x)sec2(x)+2tan2(x)dxI=1π-π4π4sec2(x)1+tan2(x)+2tan2(x)dx[sec2(x)-tan2(x)=1]I=1π-π4π4sec2(x)1+3tan2(x)dx

Step 3: Simplify further using substitution

Let tanx=t

sec2(x)dx=dt

I=1π-1111+3t2dtI=13π-11113+t2dtI=13π-111132+t2dtI=13π3tan-13t-11[1a2+x2dx=1atan-1xa]I=13π3tan-13(1)-tan-13(-1)I=13π3tan-13+tan-13I=13π23×π3I=233

Step 4: Solve for the required value

27I2=27233227I2=2742727I2=4

Hence, the value of 27I2 is 4.


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon