If ∫0π3cosx3+4sinxdx=klog3+233 then k is
12
13
14
18
Explanation for the correct option.
Find the value of k:
Given,
∫0π3cosx3+4sinxdx=klog3+233.
Let, sinx=t
⇒cosxdx=dt
If, x=0then, t=0 and x=π3then, t=32.
⇒∫03213+4tdt=klog3+233⇒14log3+4t032=klog3+233⇒14log(3+23)-log3=klog3+233⇒14log3+23)3=klog3+233
On comparing the both side, k=14.
Hence, the correct option is C.