If limx→0(ekx-1)sinkxx2=4, then k=?
2
-2
±2
±4
Explanation for the correct option.
Step 1: Simplify limx→0(ekx-1)sinkxx2
limx→0(ekx-1)sinkxx2=limx→0(ekx-1)x×sinkxx=limx→0(ekx-1)x×sinkxkx×kdividingandmultiplyingbyk=limx→0(ekx-1)x×1×k;bysinkxkx=1.....1
Step 2: Solve limx→0(ekx-1)x.
(e0-1)0=00
As, (e0-1)0 is in 00form, so we will apply L's Hospital Rule.
limx→0(ekx-1)x=limx→0k·ekx-01=k·e0=k...........(2)
Step 3: Find the value of k.
From step 1 and step 2, we get
limx→0(ekx-1)sinkxx2=k×1×k=k2
It is given that,
limx→0(ekx-1)sinkxx2=4⇒k2=4⇒k=±2
Hence, option C is correct.
If limx→0kx cosec x=limx→0 x cosec kx,find k.
If limx→0kx cosec x = limx→0x cosec kx , then k =