Iflog5log5log2x=0, then value of x is
32
125
625
25
Explanation for the correct option
Given that, log5log5log2x=0
⇒ log5log2x=50 ∵logab=x⇒b=ax
⇒ log5log2x=1
⇒ log2x=51 ∵logab=x⇒b=ax
⇒ log2x=5
⇒ x=25 ∵logab=x⇒b=ax
⇒ x=32
Hence, option(A) is the correct answer.