If S is the sum of the first 10 terms of the series tan-113+tan-117+tan-1113+tan-1121… then tan(S) is equal to:
511
56
-65
1011
Explanation for the correct option.
Step 1: Using this foumula, tan-1a+tan-1b=tan-1a-b1+ab.
Given, S=tan-113+tan-117+tan-1113+…
Now using, tan-1a+tan-1b=tan-1a-b1+ab.
∴S=tan-12-11+1.2+tan-13-21+2×3+tan-14-31+3×4+….+tan-111-101+10×11=tan-12-tan-11+tan-13-tan-12+tan-14-tan-13+….+tan-1(11)-tan-1(10)=tan-111-tan-11=tan-111-11+11]
Step 2: Finding the tan(S)
∴tan(S)=11-11+11×1=56
Hence, option B is correct.
Find the sum of the first n terms of the series: 3 + 7 + 13 + 21 + 31 + …