If ∑9i=1(xi−5)=9and∑9i=1(xi−5)2=45,then the standard deviation of the 9 items x1,x2,…x9 is:
2
3
9
4
Explanation for the correct option:
Step 1: Write variance expression.
Var=1n∑i=1nxi2-1n∑i=1nxi2=19×45-19×92=5-1=4
Here, Var is the variance
Step 2: Calculate the standard deviation.
S.D.=4S.D.=2
Here, S.D. is the standard deviation
Hence, option (a) is correct.