If [x] denotes the greatest integer less than or equal to x, then the value of ∫-11x-2xdx is:
3
2
-2
-3
Explanation for the correct option.
∫-11x-2xdx=∫-10x-2xdx+ ∫01x-2xdx=∫-10(-x-2(-1))dx+ ∫01(x-20)dx=∫-10(-x+2)dx+ ∫01xdx=-x22+2x-10+x2201=-02--122+20+1+12-022=12+2+12=3
Hence, option A is correct.