If x=∑n=0∞-1ntan2nθ and y=∑n=0∞cos2nθ, where 0<θ<π/4, then:
y1+x=1
x1-y=1
y1-x=1
x1+y=1
Explanation for the correct option.
Step 1: Solve x
x=-10tan20θ+-11tan21θ+-12tan22θ+.....=1-tanθ2+tanθ4+........
From here we can see that, x is in infinite G.P where, a=1andr=-tanθ2. So,
x=11+tan2θsumofinfiniteG.P=1sec2θ=cos2θ
Step 2: Solve y
y=cos20θ+cos21θ+cos22θ+......=1+cosθ2+cosθ4+......
From here we can see that, y is in infinite G.P where, a=1andr=cosθ2. So,
y=11-cos2θsumofinfiniteG.Py=1sin2θ1y=sin2θ
Step 3: Find x+1y
x+1y=cos2θ+sin2θ⇒x+1y=1⇒1y=1-x⇒y1-x=1
Hence, option C is correct.