Solution:
Let A = z, B = iz, C = z+iz
|AB| = |iz-z|
|BC| = z
|AC| = iz
|AC| = |BC|
P is the centre of AB
P = (z+iz)/2
Area of triangle ABC = ½ |AB×PC|
= ½ ((z+iz)/2)×(iz-z)
= ¼(i|z|2-|z|2-|z|2-i|z|2)
= |z|2/2
Hence option (1) is the answer.