wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In Im,n=10xm-1(1x)n-1dx for m,n1 and 10xm-1+xn-1(1+x)m+ndx=αIm,n, α belongs to R, then α = ?


Open in App
Solution

Step 1: Identifying the limits using the given Data :

Im,n=10xm-1(1x)n-1dx....(i)

10xm-1+xn-1(1+x)m+ndx=αIm,n.....(ii)

considering

x=1y+11-x=yy+1dx=-1(y+1)2dy[differentiatingw.r.t.x]

When x=1 we get y=0and when x=0we get y=

So limit 01changes to 0

lm,n=0yn-1(y+1)m+n(-1)dy[bysubstitutingtoequation(i)]=0yn-1(y+1)m+ndy.....(iii)abf(x)dx=-baf(x)dx

Step 2: Repeating the same process :

For Im,n=10xn-1(1x)m-1dx

lm,n=0ym-1(y+1)m+ndy.....(iv)

2lm,n=0ym-1+yn-1(y+1)m+ndy2lm,n=1ym-1+yn-1(y+1)m+ndy+01ym-1+yn-1(y+1)m+ndyabf(x)dx=cbf(x)dx+acf(x)dx

Step 3: Substituting y=1z

dy=-1z2dz[differentatingyw.r.t.z]

When y=1 we get z=1and when y=0we get z=

2lm,n=01ym-1+yn-1(y+1)m+ndy+10zm-1+zn-1(z+1)m+n(-1)dz2lm,n=01ym-1+yn-1(y+1)m+ndy+01zm-1+zn-1(z+1)m+ndz...(v)abf(x)dx=-baf(x)dx

Again substituting z=yand the limit will remain the same

lm,n=01ym-1+yn-1(y+1)m+ndyα=1

Hence, α=1 is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
ENGINEERING MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon