Evaluate :∫010π|sinx|dx
20
8
10
18
Evaluating the integral :
The period of |sin(x)| is π
⇒10∫0π|sin(x)|dx
sin(x) is always positive when 0<x<π then |sin(x)| =sin(x)
⇒10∫0πsin(x)dx
⇒10-cos(x)0π
⇒-10cos(π)+10cos(0)⇒20[∴cos(π)=-1,cos(0)=1]
Hence, option (A) is the correct answer.
Evaluate :cos48°-sin42°