∫0aa2-x2dx=
πa2
πa22
πa23
πa24
Explanation for the correct option:
Let I=∫0aa2-x2dx
Let us consider x=asinθ
⇒dx=acosθ
I=∫0aa2-a2sin2θacosθdθ=∫0aa2(1-sin2θacosθdθ=∫0aa2cos2θacosθdθ=∫0aacosθacosθdθ=a2∫0acos2θdθ
Now we know that, cos2θ=1+cos2θ2.
Substituting this value in the above integral we get,
I=a2∫0a1+cos2θ2dθ=a2θ2+sin2θ40a+C∵∫cos2θ=sin2θ=a2sin-1xa2+2sinθcosθ40a+Cx=asin(θ)⇒θ=sin-1xaandsin2θ=2sinθcosθ=a2sin-1xa2+2xaa2-x2a40a+C=a2π4+0-0-0+C=a2π4+CI=πa24+C
Hence, option D is the correct answer.
limx→0(a+x)2−a2x