∫0π2Sinx-cosx1+sinxcosxdx=
0
π4
π2
π
Explanation for Correct answer:
Finding the value for the given integration:
Let I=∫0π2Sinx-cosx1+sinxcosxdx→(i)
We know that , ∫abfxdx=∫abfa+b-xdx
Replace x=0+π2-xwherea=0,b=π2
I=∫0π2Sin0+π2-x-cos0+π2-x1+sin0+π2-xcos0+π2-xdx=∫0π2cosx-sinx1+cosxsinxdx→(ii)∵sinπ2-x=cosx,cosπ2-x=sinx
Add equation (i) and (ii)
I=∫0π2Sinx-cosx1+sinxcosx+cosx-sinx1+sinxcosxdx=∫0π20dx=0
Hence, option (A) is the correct answer.