∫0π2cotxcotx+tanxdx=
1
-1
π2
π4
Explanation for Correct answer:
Finding the value of the given integral,
Let I=∫0π2cotxcotx+tanxdx→(i)
We know that, ∫abfxdx=∫abfa+b-xdx
Replace x→0+π2-xwherea=0,b=π2
I=∫0π2cot0+π2-xcot0+π2-x+tan0+π2-xdx=∫0π2tanxtanx+cotx→(ii)∵cotπ2-x=tanx,tanπ2-x=cotx
Adding equation (i) and (ii)
2I=∫0π2cotxcotx+tanx+∫0π2tanxtanx+cotx=∫0π21.dx=x0π2=π2
2I=π2⇒I=π4
Hence, option (D) is the correct answer.