CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :0π2xSinxcosxcos4x+sin4xdx


A

π24

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

π28

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

π216

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

π232

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

π232


Evaluate the given integral :

Step 1: Re-expressing the integral

Let the integral be : I=0π2xSinxcosxcos4x+sin4xdx(i)

substitute : x=0+π2-x in equation (1)

I=0π20+π2-xSin0+π2-xcos0+π2-xcos40+π2-x+sin40+π2-xdx=0π2π2-xcosxSinxsin4x+cos4xdx(ii)sinπ2-x=cosx,cosπ2-x=sinx

Step 2: Add (i) and (ii)

2I=0π2xSinxcosxcos4x+sin4xdx+0π2π2-xcosxSinxsin4x+cos4xdx=0π2π2Sinxcosxcos4x+sin4xdx=π20π2Sinxcosxcos2x+sin2x2-2cos2xsin2xdx(a2+b2)=(a+b)2-2ab=π20π2Sinxcosx1-21-sin2xsin2xdxsin2x+cos2x=1

Substitute t=sin2x

dt=2sinxcosx

finding the Limits

x=0t=sin2(0)=0x=π2t=sin2(π2)=1

2I=π20112dt1-2t1-t=π401dt2t2-2t+1=π801dtt2-t+12+14-14addandsubtract14indenominator=π801dtt-122+122(a2+b2)=(a+b)2-2ab=π8tan-1t-121201dx1+x2=tan-1x=π8tan-12t-101=π8tan-12.1-1-tan-12.0-1=π8tan-1(1)-tan-1-1=π8π4-π4=π216I=π216

Hence, option (D) is the correct answer.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon