wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

0π4log1+tanxdx=


A

π8loge2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

π4log2e

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

π4loge2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

π8loge12

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

π8loge2


Explanation for Correct answer:

Finding the value of the given integral,

Let I=0π4log1+tanxdx(i)

We know that, abfxdx=abfa+b-xdx

Replace x0+π4-xreplacebyupperlimit+lowerlimit-x

I=0π4log1+tan0+π4-xdx=0π4log1+tanπ4-tanx1+tanπ4tanxdxtanA-B=tanA-tanB1-tanAtanB=0π4log1+1-tanx1+tanxdxtanπ4=1=0π4log1+tanx+1-tanx1+tanxdx=0π4log21+tanxdx=0π4log2-log(1+tanx)dx(ii)

Adding equations (i) and (ii), we get

2I=0π4log(1+tanx)dx+0π4log2-log(1+tanx)dx=log20π4dx=log2x0π4=π4log2

2I=π4log2I=π8loge2

Hence, option (A) is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon