Evaluate :∫0π[cotx]dx
π/2
1
-1
-π/2
Step 1:Consider the given equation as:
I=∫0πcotxdx......(1)
we know the property of definite integral.
∫0axdx=∫0aa-xdx
similarly,
I=∫0πcotπ-xdxI=∫0π-cotxdx.......(2)
Since, cotπ-x=-cotx
Step 2: Adding the Equation (1)and(2) to get the value of I.
2I=∫0πcotxdx+∫0π-cotxdx2I=∫0π-1dx
We know that x+-x=-1ifx∄zx+-x=0ifx∈z
2I=-x0π2I=-πI=-π2
Hence, the correct answer is Option D.