Evaluate : ∫-π2π2cosxlog1+x1-xdx
0
π241+π2
1
π22
Evaluating the integral.
we know that ∫-aafxdx=0,fxisoddfunction2∫aafxdx,fxisevenfunction
f(x) is an odd function if f-x=-fx
f(x)is an even function if f-x=fx
As per the question fx=cosxlog1+x1-x
⇒ f-x=cos-xlog1+-x1--x
⇒ f-x=cosxlog1-x1+x
⇒ f-x=cosxlog1+x1-x-1
⇒ f-x=-cosxlog1+x1-x
⇒ f-x=-fx
Hence fx=cosxlog1+x1-x is an odd function.
Therefore, the value of ∫-π2π2cosxlog1+x1-xdxis0
Hence, option A is the correct answer